

Welcome to revenge’s documentation!

REVerse ENGineering Environment (revenge) was created as a python centric
environment for many things reversing related. The idea is to create a
cross-platform API to interact with binaries in different ways, simplify
reverse engineering, and ultimately achieve a goal faster.

For the time being, revenge heavily relies on frida. On the plus side,
frida is a nice cross platform DBI (which is why it was the building
block). It also means that any bugs in frida will likely affect revenge
as well.

If you have suggestions for what you would like to see revenge do, submit
an issue ticket to my github [https://github.com/bannsec/revenge].

Installation

There are two primary ways to install and run revenge. You can use python
directly, or you can utilize the docker image.

Note

Python 2 is NOT supported!

Python3

Virtual Environment

It’s recomended to install revenge into a python virtual environment. If
you haven’t used this before, don’t worry, it’s easy.

First, install the python virtualenv package:

$ sudo apt update && sudo apt install -y virtualenv

Next, create a virtual environment for revenge:

$ virtualenv --python=$(which python3) /opt/revenge

Finally, you need to have it activated when you install or run revenge. Do
this by sourcing the activate script. Note, this may vary depending on what
shell you’re using, but the base script should be fine for most.:

$ source /opt/revenge/bin/activate

Option 1 – pypi

The fastest way to get started is to simply pip install revenge.:

$ pip3 install revenge

Option 2 – git

You can install the very latest version of revenge directly from git:

$ pip3 install https://github.com/bannsec/revenge/archive/master.zip

Docker

You can use the auto-building docker image with the following:

$ sudo docker run -it --rm --privileged bannsec/revenge

Quick Start

First off, head over to installation to get setup
initially. Also, once you’re done with quick start, please take a moment to
read about the philosophy to get a better understanding
of how to use the tool.

Just Show Me

from revenge import Process

Load up /bin/ls, but don't let it continue
p = Process("/bin/ls", resume=False)

Optionally, specify argv and envp
p = Process(["/bin/ls", ".."], envp={'var1':'val1'})

Print out some basic info about the running process
print(p.threads)
print(p.modules)
print(p.memory)

Resume execution
p.resume()

Interact with the process
p.stdout(12) # Read 12 bytes of stdout
p.stdout("something") # Read until "something" is in output
p.stderr(12) # Read 12 bytes of stderr
p.stdin(b"hello!\n") # Write to stdin
p.interactive() # Quasi-interactive shell. ctrl-c to exit.

Check out the examples for each platform for more quick start ideas.

A Little Deeper

The two cent starting guide is that everything in revenge hangs off the
core class called Process.

revenge.process.Process

This has traditionally been the starting point for opening applications,
however in some cases (Android for the moment) it has become necessary to add a
wrapper around Process to get the ball rolling. This is the Device class that is
extended for various platforms. In the future, it will likely be the starting
point for running an application.

Philosophy

The philosophy for revenge is to make all common binary reverse
engineering tasks pythonic. With this in mind, you will find that there are
many classes. Things that might not even appear to be python classes, may be
custom classes behind the scenes. This provides great flexibility in what you
can do in consice commands.

Most classes in revenge will have a lot of custom overrides. If you’re
unsure of what to do with a class, try runing __repr__ or print on it,
as often times those will produce different and useful results.

It should be noted that, at least for the time being, this application is
focused on dynamic reverse engineering. That means, all commands will return
information about the process as it is right now. Addresses will change and
values will change.

Native Interaction

The concept of native interaction are simply those actions that are not
specific to any platform. This generally entails assembly level, CPU, memory,
threading, and any other things that are going to be common among any platform.

Debugging

While the driving concept behind revenge is dynamic binary
instrumentation, you can still do some traditional debugging activities.

Breakpoints

Breakpoints in revenge are not the normal int3 or even hardware
breakpoints. Instead, revenge re-writes the address in question with a
small loop that effectively stops it there, while not actually suspending the
thread. This allows for setup to be completed or other activites to be run, and
DBI to proceed part way through the binary.

Examples

Set a breakpoint at main
process.memory['a.out:main'].breakpoint = True

Continue execution from main, later
process.memory['a.out:main'].breakpoint = False

Check if any given point in memory has a breakpoint
process.memory['a.out:main'].breakpoint

Errors

Native Errors

Native errors represent what you would get back from the operating system as an
error number. This is usually called errno. revenge attempts to handle
resolution of these errors into more helpful strings automagically with the
class NativeError.

Examples: NativeError

Exceptions

Call Exceptions

When using the memory.__call__ method to call a function, the call will be
wrapped in try/catch and will return objects of type
revenge.native_exception.NativeException.

revenge.native_exception.NativeException

Examples

Assuming that this threw an exception
exception = process.memory[':some_function']('blerg')

Where did we except?
exception.address

What type of exception?
exception.type

Thread context at time of exception, containing registers and such
exception.context

Functions

Args and Return Types

In some cases, revenge will be able to identify (or guess) correctly the
arugment types and return types for the function. However, in some cases you
may need to tell it what to expect.

Examples

atof = process.memory[':atof']

Tell revenge what the return type should be
atof.return_type = revenge.types.Double

Not needed in this case, but you can tell revenge explicitly the
parameter type
atof.argument_types = revenge.types.StringUTF8

Calling Functions

You can generically call native functions by first creating a memory object for
them. Once you have that object, you usually can call it directly. This is due
to some backend magic that attempts to identify argument and return types, and
if it fails it falls back to integers.

However, sometimes that’s not enough, and you need to tell revenge what
types to send and/or expect back. Luckily, that’s fairly strait forward.

Examples

import revenge
process = revenge.Process("/bin/ls", resume=False, verbose=False)

Grab memory object for strlen
strlen = process.memory[':strlen']

Call it directly on a string
strlen("test")
4

You can specify the arg types if you need to
abs = process.memory[':abs']
abs(types.Int(-12))
12

Sometimes you need to define what you're expecting to get in return
atof = process.memory[':atof']
atof.return_type = revenge.types.Double
atof('12.123')
12.123

Function Hooking

You can hook and replace functions. For native functions, you can either use an
integer (which simply replaces the entire function and returns that integer
instead), or a string that contains javascript that will be executed.

For the javascript replace, a special variable is created for you called
original. You can assume this variable will always be there and will always
be the original function you are replacing. This allows you to call down to the
original function if needed, either replacing arguments, return types, or
simply proxying the call.

To get data back from inside your replacement function, you need to define
replace_on_message. That variable needs to be a callable that takes in at least
one argument (the return from the script). Otherwise, all return sends will
simply be ignored.

Sometimes it’s easier to just attach to the entry or exit of the function
rather than replacing it. You can do this via the on_enter method, in the
same way as you would for replace. The only difference is that you do not
have to worry about calling the function, as that will be done automatically
after your code completes.

Examples

import revenge
process = revenge.Process("/bin/ls", resume=False, verbose=False)

Replace function 'alarm' to do nothing and simply return 1
alarm = process.memory[':alarm']
alarm.replace = 1

Un-replace alarm, reverting it to normal functionality
alarm.replace = None

More examples in the code.

revenge.memory.MemoryBytes.replace()

revenge.memory.MemoryBytes.on_enter()

Disassembly

You can disassemble in memory using revenge via the memory object.

Examples

import revenge
process = revenge.Process("a.out", resume=False, verbose=False)

print(process.memory['a.out:main'].instruction_block)
"""
0x804843a: lea ecx, [esp + 4]
0x804843e: and esp, 0xfffffff0
0x8048441: push dword ptr [ecx - 4]
0x8048444: push ebp
0x8048445: mov ebp, esp
0x8048447: push ebx
0x8048448: push ecx
0x8048449: sub esp, 0x10
0x804844c: call 0x8048360
"""

Or just analyze one instruction at a time
process.memory['a.out:main'].instruction
"""<AssemblyInstruction 0x804843a lea ecx, [esp + 4]>"""

Building Functions With C

As of frida version 12.7, there is now support for injecting code simply as
C. The backend of frida takes care of compiling it and injecting.
revenge now exports this in a super easy to use way through the
create_c_function() method.

revenge extends this also by making it easier to perform function calls
anywhere in process space. It does this by creating a run-time function
defition based on the current known address of the function. See example.

Examples

add = process.memory.create_c_function(r"""
 int eq(int x, int y) {
 return x==y;
 }""")

assert add(4,1) == 5

#
Runtime function calling
#

Suppose we want to call strlen, we need to export it as a callable
function. Since we're compiling C code, the compiler has no idea
where this function really is, and will throw an exception. However,
revenge allows you to easily tell the compiler where it is and run as
if you compiled with the application itself.

Grab the strlen address
strlen = process.memory[':strlen']

Setup strlen's argument and return types
strlen.argument_types = types.StringUTF8
strlen.return_type = types.Int

Main difference is that we're adding a keyword arg to say
"export/link in strlen here". So long as you've defined the
MemoryBytes object, this can be anywhere, not just exported symbols.

my_strlen = process.memory.create_c_function(r"""
 int my_strlen(char *s) { return strlen(s); }
 """, strlen=strlen)

assert my_strlen("blerg") == 5

Handles

Handles are an abstraction for the native handles for your given operating
system. For details, see examples in the python API doc.

revenge.plugins.handles.Handles

revenge.plugins.handles.Handle

Memory

Resolve Address

Since we’re always dealing with running processes, we need a way to quickly
identify locations of things of interest in memory. The primary way to do this
is though a location format.

The location format is simply a string that takes the form <module>:<offset
or symbol>. If no module is specified, the symbol will be resolved in the
normal process manner (local->imports).

Resolving specific non-export symbols for libraries can be done with the
Symbols class instead.

Examples

import revenge
process = revenge.Process("/bin/ls", resume=False, verbose=False)

Resolve strlen from libc
strlen = process.memory['strlen']

Resolve symbol test from the main binary
t = process.memory['bin:test']

Grab memory object directly with address
thing = process.memory[0x12345]

Write memory directly to address
process.memory[0x12345] = thing

Find

One common task is to find something in memory. revenge exposes this
through the MemoryFind class.

revenge.memory.MemoryFind

Examples

import revenge

process = revenge.Process("/bin/ls", resume=False, verbose=False)

f = process.memory.find(types.StringUTF8('/bin/sh'))
"""<MemoryFind found 1 completed>"""

[hex(x) for x in f]
"""['0x7f9c1f3ede9a']"""

Read/Write

revenge has the ability to read and write to memory. It does this through
the MemoryBytes class.

revenge.memory.MemoryBytes

Because of the inherent ambiguities of reading and writing to memory, you must
specify the type of thing that you’re reading or writing. Both reading and
writing are done as a property to the class.

Examples

import revenge

Start up /bin/ls
process = revenge.Process("/bin/ls", resume=False, verbose=False)

Grab some memory location
mem = process.memory['ls:0x12345']

Read UTF8 string from that location
mem.string_utf8

Write UTF8 string to that location
mem.string_utf8 = "Hello world"

Read signed 32-bit integer
mem.int32

Write signed 32-bit integer
mem.int32 = -5

Extract a range of bytes
mem = process.memory[0x12345:0x22222]
mem.bytes

Write bytes into memory
mem.bytes = b'AB\x13\x37'

You can write bytes generically if using types
process.memory['ls:0x12345'] = types.Int(12)

You can use cast to read bytes using a type
assert mem.cast(types.Int32) == mem.int32

Memory Pages

We can investigate the memory layout programmatically or visually. We can also
modify page permissions.

Examples

import revenge
process = revenge.Process("/bin/ls", resume=False, verbose=False)

Print out memory layout like proc/<pid>/maps
print(process.memory)

"""
 564031418000-56403141d000 r-x /bin/ls
 56403141d000-56403141e000 rwx /bin/ls
 56403141e000-564031437000 r-x /bin/ls
 564031636000-564031638000 r-- /bin/ls
 564031638000-564031639000 rw- /bin/ls
 564031639000-56403163a000 rw-
 5640326bd000-5640326de000 rw-
 7f07f0000000-7f07f0021000 rw-
 7f07f8000000-7f07f8021000 rw-
 7f07fc272000-7f07fca72000 rw-
 7f07fca73000-7f07fd273000 rw-
 7f07fd274000-7f07fda74000 rw-
 7f07fda75000-7f07fe275000 rw-
 7f07fe275000-7f07fe412000 r-x /lib/x86_64-linux-gnu/libm-2.27.so
 7f07fe611000-7f07fe612000 r-- /lib/x86_64-linux-gnu/libm-2.27.so
 7f07fe612000-7f07fe613000 rw- /lib/x86_64-linux-gnu/libm-2.27.so
 7f07fe613000-7f07fe61a000 r-x /lib/x86_64-linux-gnu/librt-2.27.so
 7f07fe819000-7f07fe81a000 r-- /lib/x86_64-linux-gnu/librt-2.27.so
 7f07fe81a000-7f07fe81b000 rw- /lib/x86_64-linux-gnu/librt-2.27.so
 7f07fffd5000-7f0800000000 rw-
 7f0800000000-7f0800021000 rw-
 7f0804013000-7f080402a000 r-x /lib/x86_64-linux-gnu/libresolv-2.27.so
 7f080422a000-7f080422b000 r-- /lib/x86_64-linux-gnu/libresolv-2.27.so
 7f080422b000-7f080422c000 rw- /lib/x86_64-linux-gnu/libresolv-2.27.so
 7f080422c000-7f080422e000 rw-
 7f080422f000-7f0804a2f000 rw-
 7f0804a2f000-7f0804a49000 r-x /lib/x86_64-linux-gnu/libpthread-2.27.so
 7f0804c48000-7f0804c49000 r-- /lib/x86_64-linux-gnu/libpthread-2.27.so
 7f0804c49000-7f0804c4a000 rw- /lib/x86_64-linux-gnu/libpthread-2.27.so
 7f0804c4a000-7f0804c4e000 rw-
 7f0804c4e000-7f0804c51000 r-x /lib/x86_64-linux-gnu/libdl-2.27.so
 <clipped>
"""

Loop through the maps programmatically
for m in process.memory.maps:
 print(m)

Make a page rwx
page = process.memory.maps[0x12345]
page.protection = 'rwx'

Allocate Memory

We can allocate and free memory with direct calls to the underlying operating
system APIs, or through the memory wrapper.

Examples

import revenge
process = revenge.Process("/bin/ls", resume=False, verbose=False)

Allocate a string in memory
mem = process.memory.alloc_string("Hello!")

Use it like a pointer
Free it once you're done
mem.free()

Allocate some space generically
mem = process.memory.alloc(128)

Modules

For revenge, a module is any loaded library or shared library.

Listing Modules

List current modules
print(process.modules)
"""
+--------------------+----------------+-----------+---+
| name | base | size | path |
+--------------------+----------------+-----------+---+
test2	0x557781b84000	0x202000	/home/user/tmp/test2
linux-vdso.so.1	0x7ffd3b5ee000	0x2000	linux-vdso.so.1
libc-2.27.so	0x7fc6a8499000	0x3ed000	/lib/x86_64-linux-gnu/libc-2.27.so
ld-2.27.so	0x7fc6a888a000	0x229000	/lib/x86_64-linux-gnu/ld-2.27.so
libpthread-2.27.so	0x7fc6a827a000	0x21b000	/lib/x86_64-linux-gnu/libpthread-2.27.so
frida-agent-64.so	0x7fc6a6294000	0x17ba000	/tmp/frida-7846ef0864a82f3695599c271bf7b0f1/frida-agent-64.so
libresolv-2.27.so	0x7fc6a6079000	0x219000	/lib/x86_64-linux-gnu/libresolv-2.27.so
libdl-2.27.so	0x7fc6a5e75000	0x204000	/lib/x86_64-linux-gnu/libdl-2.27.so
librt-2.27.so	0x7fc6a5c6d000	0x208000	/lib/x86_64-linux-gnu/librt-2.27.so
libm-2.27.so	0x7fc6a58cf000	0x39e000	/lib/x86_64-linux-gnu/libm-2.27.so
+--------------------+----------------+-----------+---+
"""

Module Lookup

Instead of enumerating modules, you can look up a module by it’s full name, a
glob name, or by giving an address.

Get the base address for specific module
hex(process.modules['test2'].base)
0x557781b84000

Or by glob
process.modules['libc*']
"""<Module libc-2.27.so @ 0x7f282f7aa000>"""

Or resolve address into corresponding module
process.modules[0x7f282f7ab123]
"""<Module libc-2.27.so @ 0x7f282f7aa000>"""

Symbols

Symbols for modules can be resolved and enumerated in a few ways.

Examples

Grab symbol address for main function in my_bin
main = process.modules['a.out'].symbols['main']

List all symbols from libc
print(process.modules['*libc*'].symbols)

Grab the GOT entry for printf
process.modules['a.out']['got.printf']

Grab the PLT entry for printf
printf_plt = process.modules['a.out']['plt.printf']

Use symbol to get memory
printf_plt.memory

Call symbol directly
printf_plt()

File Format Parsing

Some limited file format parsing is implemented.

Examples

This elf object parses the elf as loaded in memory
elf = process.modules['ls'].elf

Loading Libraries

You can dynamically load libraries in revenge by using the
load_library() method. This will attempt to load
the library using native calls for your platform and return a
Module object.

Symbols

Symbol support is provided under modules.

Threads

Enumerating

Enumerating threads is done by calling process.threads which is actually a
Threads object.

revenge.threads.Threads

This threads object will look for the most current thread information every
time you call methods on it, so if you’re looking to be performant and don’t
need to refresh the threads, keep the return objects instead of re-enumerating.

Examples

threads = process.threads
print(threads)

"""
+--------+---------+----------------+--------------+-------+
| id | state | pc | module | Trace |
+--------+---------+----------------+--------------+-------+
| 120204 | waiting | nanosleep+0x40 | libc-2.27.so | No |
+--------+---------+----------------+--------------+-------+
"""

Or you can go through the threads programmatically
for thread in threads:
 print(thread)

If you know the thread id, you can index to it
thread = process.threads[81921]

Tracing

Please see tracing for more information.

Creating

You can easily create new threads using create().

Examples

Create a stupid callback that just spins
func = process.memory.create_c_function("void func() { while (1) { ; } }")

Start the thread
t = process.threads.create(func.address)
assert isinstance(t, revenge.threads.thread.Thread)

View it running
print(process.threads)

Return Values

Thread return values are handled by revenge in the same way the native
operating system does. Specifically, you can call
join() to get the return value.

Note, if you’re attempting to return something outside a standard integer (such
as a double or float), you will need to malloc space yourself and save off the
value in there, then return the pointer to that space instead.

Tracing

A core reason for creating revenge was to make tracing applications easier.
With that in mind, there will be a few different built-in tracers to run.

Note

You can only have one trace running per-thread at a time! This is a
function of of DBI works, and not a limitation with revenge specifically.

Tracing is now considered a Technique. See Techniques for more
information

Instruction Tracing

It’s often interesting to simply trace an execution path. To do this with
revenge, you can use the instruction tracing method to get a Tracer object
and view your results. You can trace at different levels of granularity by
specifying what you want to trace in the keyword arguments.

Examples

Possible tracing options are: call, ret, block, exec, compile
Default is False for all of them, so specify any combination
trace = process.techniques.NativeInstructionTracer(call=True, ret=True)

Since trace is a technique, you must apply it
By default, trace will apply to all threads if not given any arguments
trace.apply()

t = list(trace)[0]

print(t)
"""
call ls:_init+0x211c libc-2.27.so:__libc_start_main 0
call libc-2.27.so:__libc_start_main+0x47 libc-2.27.so:__cxa_atexit 1
call libc-2.27.so:__cxa_atexit+0x54 libc-2.27.so:on_exit+0xe0 2
ret libc-2.27.so:on_exit+0x1a7 libc-2.27.so:__cxa_atexit+0x59 3
ret libc-2.27.so:__cxa_atexit+0xb4 libc-2.27.so:__libc_start_main+0x4c 2
call libc-2.27.so:__libc_start_main+0x76 ls:_obstack_memory_used+0xc30 1
call ls:_obstack_memory_used+0xc5c ls:_init 2
ret ls:_init+0x16 ls:_obstack_memory_used+0xc61 3
call ls:_obstack_memory_used+0xc79 ls:_init+0x21f8 2
ret ls:_init+0x21a9 ls:_obstack_memory_used+0xc7d 3
ret ls:_obstack_memory_used+0xc94 libc-2.27.so:__libc_start_main+0x78 2
call libc-2.27.so:__libc_start_main+0x9a libc-2.27.so:_setjmp 1
ret libc-2.27.so:__sigsetjmp+0x83 libc-2.27.so:__libc_start_main+0x9f 2
call libc-2.27.so:__libc_start_main+0xe5 ls:_init+0x738 1
<clipped>
"""

Loop through each instruction in the trace
for i in t:
 print(i)

Remove the trace so you can run a different one
trace.remove()

Take a slice of the trace
t2 = t[12:24]

Timeless Tracing

revenge has a technique for timeless tracing. For more information, see
NativeTimelessTracer.

Types

revenge defines it’s own types to better understand what data it is
looking at. This means, while in many cases you can pass native python
types to methods and fields, sometimes you will need to pass an instantiated
type instead.

See types doc.

Examples

from revenge import types

Create some ints
i = types.Int32(0)
i2 = types.UInt64(12)

You can optionally read memory as a type instead of using memory attributes
assert process.memory[0x12345].cast(types.Int32) == process.memory[0x12345].int32

Structs

The Struct type is a little different from the rest of
the types. Specifically, it defines a C structure, rather than a specific type.
A struct can be defined by itself first, and then “bound” to a memory address.

The behavior of structs is to be used like dictionary objects.

Note

Compilers have NO standardization for struct padding. If your struct is not
displaying correctly, check if you need to add type.Padding in between
some elements.

Examples

Create a struct
my_struct = types.Struct()
my_struct.add_member('member_1', types.Int)
my_struct.add_member('member_2', types.Pointer)

Alternatively, add them IN ORDER via dict setter
my_struct = types.Struct()
my_struct['member_1'] = types.Int
my_struct['member_2'] = types.Pointer

Use cast to bind your struct to a location
my_struct = process.memory[0x12345].cast(my_struct)

Or set memory property directly
my_struct.memory = process.memory[0x12345]

Read out the values
my_struct['member_1']
my_struct['member_2']

Write in some new values (this will auto-cast based on struct def)
my_struct['member_1'] = 12

Print out some detail about it
print(my_struct)
"""
struct {
 test1 = -18;
 test2 = 3;
 test3 = 26;
 test4 = 4545;
 test5 = 3;
 test6 = 5454;
}
"""

There's also a short-hand way to get space for your struct on the heap
struct = process.memory.alloc_struct(struct)

It's bound to that address now, use it as above.
Using this struct as an argument to a function call, you will likely
want to wrap it as a pointer.
func = process.memory[<something>]
func(types.Pointer(my_struct))

Telescope

The Telescope class is a meta-ish class that holds
other types. Specifically, it’s goal is to address the question of how to
describe and handle the concept of “telescoping” variables. With this in mind,
often you do not create this directly, but will get it from certain tracer
techniques.

Interaction with this class is effectively using the thing and next
properties. Where thing is a holder for whatever the current thing is and
next is the next one. Also, type will help inform you what to expect in
the variable.

Example

Telescope down into address 0x12345
scope = revenge.types(process, 0x12345)
scope.thing
scope.next

Release Notes

Version 0.20

	Introducing new Angr plugin that allows you to
pick up an angr state at virtually any point in execution

	Thread now shows breakpoint register information
when at a breakpoint instead of actual internal state

	You can now register a plugin to specifically be a
Thread plugin the same way as modules

	Better Windows handling

	Automatically breaks at process exit (like linux)

	Unbuffers stdout (like linux)

	Exposed revenge.modules.Module.pe to manually use PEFile

	Implemented entrypoint finding

	Properly handle radare2 not being installed

	Created revenge.process.Process.resume() to generically allow resuming
of all paused threads

	Created new technique for
NativeInstructionCounter
to more easily allow counting instructions executed

	General updates and bug fixes

Version 0.19

	Added exception catching for the main thread. Any exceptions encountered will
now be added to exceptions

	You can now expect output by supplying a string or bytes to
stdout() or
stderr()

	Added ability to kill() your thread more
easily

	Modules can now have plugins registered with
_register_plugin()

	The radare2 plugin is now a Module plugin

	Added initial DWARF decompiler

	All remote file loads will use a local cache, speeding up access times

	Backend updates to batch sending and timeless tracer

	Updated for frida api changing

Version 0.18

	Added ability to programmatically talk to
stdin(),
stdout(), and
stderr()

	Added new plugin for enhancing reversing with
Radare2

	Ability to highlight() execution
paths for view in V and VV modes

	Integrated ghidra decompiler

	Added Decompiler plugin to allow for
requesting decompiled code and doing thing such as highlighting paths

	Added plugin to support enumerating/reading and writing to
Handles

	Added helper to discover what file an address belongs to as well as it’s
relative offset from the beginning of that file:
lookup_offset()

Version 0.17

	Added support for ARMContext (Android on
ARM emulator works now)

	Drastically improved performance for
NativeTimelessTracer

	Updates to contexts

	Tracking changed registers in
changed_registers

	Auto highlighting changed registers when printing cpu context

	Consolidated and simplified handling of CPU contexts

	Lookups of the form “mod:sym:offset” work now

	New LocalDevice class

	Bunch of restructuring to eventually support multiple engines

Version 0.16

	Initial
NativeTimelessTracer
implementation is here! For more information, checkout
NativeTimelessTracer

	Exposed frida’s on_enter() to allow for
more easily monitoring functions rather than replacing them

	Overhaul of Telescope

	Implemented int/hex/bitand and rshift

	Telescopes are now implemented via hash consing. This is drastically
reduces the memory utilization when using the new NativeTimelessTracer.

	Refactor of underlying js code for handling telescoping

	CPU Contexts now handle and print telescoping register values

	NativeException now telescopes the CPU
reigsters when returning an exception

	Updated travis tests to enable testing on Android 10

	Updated coveralls to merge results

Version 0.15

	Implemented ability to call native function in it’s own thread, instead of
from frida’s core thread

	This will be done transparently, but can be done manually by calling
revenge.memory.MemoryBytes._call_as_thread()

	Implemented Techniques to make common sets of actions more
generic

	InstructionTracer is now
NativeInstructionTracer

	NativeInstructionTracer
now supports two new options

	include_function allows you to specify a specific function to trace.
This will cause revenge to ignore any trace before or after that function
call.

	exclude_ranges allows you to specify ranges of memory to be ignored
from the trace

	Created NativeError class to generically
handle errno.

	Technique mixin now also has optional method of
_technique_code_range() that will get
passed any known revenge/frida specific code ranges that can be ignored

	Thread changes

	Implemented join() to allow for retrieving
thread exit codes

	Threads will now have pthread_id attribute if they were spawned on Linux.

	Bugfix in create()

	Implemented batch_send js include to make it easier to handle pushing
lots of data back

Version 0.14

	argv and envp options added to Process spawning

	Added revenge.threads.Threads.create() to simplify kicking off a thread

	Simplified symbol resolution, you can now use process.memory['symbol']
directly as well as process.memory['symbol+offset']

	threads is now a submodule

	Can now create dummy thread for hidden Frida thread

	CPUContexts have been moved to revenge.cpu.contexts

	Tracer assembly has been moved to revenge.cpu.assembly

Version 0.13

	Implemented Frida’s new CModule support as
create_c_function().

	Also added support to make calling dynamic functions easier by passing them
as kwargs to the constructor. See examples in code doc.

	Added js_include option to run_script_generic() to
enable javascript library/code reuse type things

	Implemented telescope.js and Telescope for
initial telescoping variable support

	revenge.device_types is now called devices.

	Added quit() to enable closing the process explicitly.

	Travis test cases are a bit more stable now.

	Implemented _from_frida_find_json() to
allow for loading of MemoryRange objects directly from Frida json.

Version 0.12

	Added __call__ to Symbol allowing for
symbol() function call directly from the symbol class.

	Added Symbol memory() as a shortcut to get the
MemoryBytes object for said symbol.

	Implemented new type for Struct. It’s now much easier
to both define, set, and read memory structures.

	Implemented Memory __setitem__, allowing for
setting memory implicitly based on type. Example:

process.memory[0x12345] = types.Int16(5)

	Implemented MemoryBytes cast(), allowing
for more programmatic retrieval based on type.

	Stability improvements

Version 0.11

	Updated revenge.threads.Threads.__repr__() to use descriptive addresses

	Added 0.5 second cache to Modules to improve performance.

	Many updates to revenge.tracer.instruction_tracer.Trace.__str__() to
improve readabiliy (descriptive addrs, indentation, programmatic spacing)

	Implemented plt() to identify the base of the
Procedure Lookup Table in ELF.

	Implemented and incorporated GOT and PLT symbols into
symbols(). They will also now resolve on traces
i.e.: symbol[‘got.printf’] or symbol[‘plt.printf’]

	Symbols returned from symbols() are now
actually an object: Symbol.

	Updated slice for Trace so that
trace[:12], for instance, now returns a new Trace object with those
instructions instead of just a list.

	entrypoint_rebased no longer exists. Now, just use
entrypoint()

	Tests/docs updates

Version 0.10

	Added revenge.memory.MemoryBytes.argument_types() to allow a single or
list/tuple of argument types for the function

	Added revenge.memory.MemoryBytes.replace() javascript string option.
Now, you also have the option to set the replace to a javascript string that
will replace the given function.

	Added original global variable for MemoryBytes.replace to allow you
to more easily chain a call into the original native function.

	Aliased revenge.memory.MemoryBytes.implementation() to
MemoryBytes.replace to standardize the naming convention with
JavaClass.implementation.

Techniques

In revenge parlance, a Technique is a high
level set of actions that should be performed on the running binary. For
instance, instead of manually deciding how you need to hide yourself from
debugging checks, a technique could be applied that specifically attempts to do
that. They’re effectively high level batches of actions to be parformed with a
single goal in mind.

Types of Techniques

There are two main types of techniques, due to how these techniques may be
implemented:

Stalk Techniques

These techniques require the use of per-thread stalking. The important thing to
note here is that you can only have one stalker running on a thread at a time.
That means, you can only use one of these techniques at a time.

Replace Techniques

These techniques utilize binary re-writing prior to thread execution. The
important thing to realize here is that these changes will affect all threads,
since they are not thread specific. You can, however, have as many of these
techniques running at a time as you like, since they do not take up a stalker
context.

General Technique Usage

Specifics of technique usage may vary from technique to technique, the general
usage remains the same. The steps are:

	Start your process

	Select the technique from process.techniques.<technique>()

	apply() your technique

a. If it is a stalking technique, you may want to provide the threads to the
apply function

	(optionally) remove() the technique at some point.

Techniques for specific calls

It’s possible to apply a technique for specific calls. For instance, where you
would use a native call to a function like time(0), you can also provide a
techniques argument with a single (or list) of techniques to apply to the
specific call.

Details can be found under MemoryBytes documentation.

Implemented Techniques

For a list of techniques and more information, see Techniques.

How To Create a Technique

Creating a new technique is relatively strait forward:

	Create a new submodule in revenge/techniques

	Create your technique class by extending revenge.techniques.Technique

	Implement apply and remove methods

	Make sure TYPE is defined in your class

	In the __init__.py, be sure that you expose the Technique you
created. It can be any name, so long as the class instantiator is visible.

	docs and tests

revenge will auto-discover the technique at runtime and expose it.

Engines

Note

Engines concept is currently in development.

To support diversification and not be completely tied to one tool, revenge
has introduced the concept of engines. The engine is
basically the underlying driver that supports running revenge. Initially,
this engine has been the impressive frida DBI. However, in some cases
either frida doesn’t yet support what we would like to do, or other
technologies (such as an emulator), might be a better fit.

To select an engine, simply provide the engine keyword when instantiating
your Process object. This will tell revenge to use the
given engine.

Plugins

Plugins are a means for revenge to expose support in a general way. Plugins
are dynamically loaded at runtime based on the current engine and compatability
of the process for this plugin.

Building a Plugin

To build a plugin, you must extend the Plugin class.
The general layout is:

	Create new submodule under revenge.plugins. This will be the core of the
plugin and should have __no__ dependencies on any specific engine

	Create a submodule under revenge.engines.<engine>. This should extend the
plugin class created above, and fill in any engine specific properties. NOTE:
it’s possible to create a plugin that is completely independent of any
engine. In this case, the submodule here would simply extend the plugin class
you created in step 1 and do nothing.

	Implement _is_valid. This property is called
after instantiation to allow the plugin to determine if it wants to register
in the current environment or not.

That’s it. You should now have a working plugin.

Registering a Plugin

Your plugin will automatically register to the base process object if you
return True for _is_valid. However, you can also dynamically register your
plugin in a few different locations.

Registering a Module Plugin

Module plugins end up instantiated under Module.<plugin>. For instance:

"plugin" here is where your plugin would end up
It will get instantiated with the module that it is called from
process.modules['my_process'].plugin

If your plugin would likely be specific per module, you can register it as a
module plugin. To do this, simply call
revenge.modules.Modules._register_plugin() with your class instantiator
as well as a name for the plugin. If successful, your plugin will now show up
under the module object.

Example of how to do this can be found in the API docs.

Registering a Thread Plugin

Thread plugin registration works exactly the same way that module registration
works. See revenge.threads.Threads._register_plugin().

angr

The angr plugin is being written to help expose features of angr to dynamic
reversing.

Requirements

The current requirements to use the angr plugin are:

	Having the base angr installed

	Having angr-targets installed

Setup

As of writing, the version of angr in pypi is very out of date and will not
work correctly for revenge. You will need to perform a dev install until
angr pushes a new build.

git clone --depth=1 https://github.com/angr/angr-dev.git
cd angr-dev
./setup.sh -e angr -i

Note the -e. Choose whichever python virtual environment you have revenge
installed in.

angr also has pre-built docker containers available which alleviate build
issues.

Usage

Thread Plugin

As a thread plugin, angr gets exposed as a property of
Thread. The primary use case of this is to allow
seamless Symbion [http://angr.io/blog/angr_symbion/] integration. When
requesting objects, the plugin will automatically configure those objects to
use revenge as a concrete backer as well as provide additional relocation
support that isn’t available directly by Symbion.

In English, this means you can execute to interesting points in your code using
revenge, then easily get an angr state object that will pick up right at
that point.

Basic Example

Set process breakpoint somewhere interesting
process.memoery[interesting].breakpoint = True

Once you hit that interesting point, grab your thread
thread = list(process.threads)[0]

Now easily grab an angr state as if angr was already at this point in
execution
state = thread.angr.state

assert state.pc == thread.pc

Other helpful things
thread.angr.project
thread.angr.simgr

For more info, see the Angr API.

Decompiler

The decompiler plugin is an abstraction around the concept of decompiling
code. While it registers as a single plugin, the actual decompiler backend is
flexible and can be extended with new decompilers. When revenge starts up,
a decompiler will be selected from those that revenge can identify that you
have on your system.

General Usage

Here’s a basic example. For more examples, see the code docs under
Decompiler.

Attempt to decompile an address
decomp = process.decompiler.decompile_address(0x1234)

Attempt to decompile a function
decomp = process.decompiler.decompile_function(0x1234)

See notes for each decompiler engine about possible caveats.

Engines

	DWARF (priority 100)

	Radare2-Ghidra (priority 70)

Building A Decompiler

To build a decompiler engine (building the decompiler is WAY beyond this little
documentation), you must extend the
DecompilerBase class. The calls to
decompile MUST return an instance of
Decompiled, which in turn must have 0 or
more populated DecompiledItem instances.

On initialization of your decompiler, if it’s valid for the current configuration,
register it as an option with process.decompiler._register_decompiler.

The priority is mostly a way to select from multiple competing decompilers. The higher
the number the higher priority.

DWARF

DWARF is a format for debugging info relating to ELF files. Standard
compilations of binaries do not contain DWARF info. However, when you compile
binaries with this info (generally with the -g flag), much more useful
inforamtion is available. This plugin attempts to expose that information.

General Interaction

General interaction with the DWARF plugin is via the modules. For instance:

bin = process.modules['bin']
dwarf = bin.dwarf

Functions

Functions are enumerated and exposed via the
functions property. You can utilize the
lookup_function() method to resolve an
address to it’s function.

Source Lookup

The DWARF plugin can assist with looking up what the corresponding file and
line number would be for a given address. As with all things in revenge
this address is the current loaded address, rather than a base address. This
lookup can be done via lookup_file_line().

You can also ask DWARF to “decompile” an address for you. Note, this isn’t
actually decompiling, but the names are kept the same to avoid confusion.
Instead of actually decompiling, the plugin will attempt to lookup the source
address and line for your running address, and then lookup the corresponding
source code for it. You must ensure you have told the plugin where your source
directories are by using add_source_path().
Lookups for a source address can be done via
decompile_address() and
decompile_function().

Radare2

The radare2 plugin will attempt to utilize radare2 to enrich local
reversing information. It also exposes the ability to connect to a remote
radare2 instance and push enrichment data there.

Connecting

If revenge identifies that radare2 is installed, the plugin will
automatically load and start up a base instance of radare2 for the given
binary. By default, it will NOT perform auto analysis, since this can be
expensive and time consuming.

Connecting to a remote instance can be done with the
connect() method.

Highlighting

One thing that can be very helpful when analyzing code paths is to graphically
highlight() them. This allows you to
more easily see where a path travelled. Further, this becomes helpful when
trying to identify where your test cases (or fuzzer) has covered in your code.
While it can be done programmatically, this plugin exposes an easy way to view
(in radare2) the paths covered.

Whereas other methods in this plugin can be used without a remote connection,
highlighting likely makes the most sense when connected to a remote radare2
session.

Example

Startup r2 in a separate window
r2 -A ./whatever
In that window, start up the HTTP server
=h& 12345

Connect up to that session from your revenge session
process.radare2.connect("http://127.0.0.1:12345")

Setup a timeless tracer
timeless = process.techniques.NativeTimelessTracer()
timeless.apply()
t = list(timeless)[0]

Assuming you need to send some input to this program
process.memory[process.entrypoint].breakpoint = False
process.stdin("some input\n")

Now that our trace is populated, send that data off to our r2 session
process.radare2.highlight(t)

You can also use r2 for loaded libraries
libc = process.memory['*libc*']
libc.radare2

In your other r2, you should now see highlights for this path in the
Visual mode and the Very Visual mode

Writeups

Here’s some write-ups done using revenge.

	DEFCON Quals 2019: VeryAndroidoso [https://bannsecurity.com/index.php/home/10-ctf-writeups/55-defcon-quals-2019-veryandroidoso]

	CSAW 2019: beleaf [https://bannsecurity.com/index.php/home/10-ctf-writeups/56-csaw-2019-beleaf]

	Patriot 2020: malloc [https://bannsecurity.github.io/writeups/2020/04/29/patriotctf-2020-rev-malloc/]

Native

Native

	CPU
	CPUContextBase

	CPUContext
	x64

	x86

	arm

	Assembly
	Assembly Instruction

	Assembly Block

	Devices

	Process

	Processes

	Errors

	Exceptions

	Functions
	Functions

	Process

	Memory
	Memory

	MemoryBytes

	MemoryRange

	MemoryFind

	Modules
	Modules

	Module

	Symbols
	Symbol

	Threads
	Threads

	Thread

	Tracing

	Native Types

CPU

CPUContextBase

This is the base mix-in class when defining new CPUs to support.

	
class revenge.cpu.contexts.CPUContextBase(process, diff=None, **registers)

	Bases: object

	
property changed_registers

	What registers were changed with this step?

	Type

	list

	
pc

	

	
sp

	

CPUContext

The CPUContext represents the state of the CPU. The following is the base
generator of contexts.

	
revenge.cpu.contexts.CPUContext(process, *args, **kwargs)

	

x64

	
class revenge.cpu.contexts.x64.X64Context(process, diff=None, **registers)

	Bases: revenge.cpu.contexts.CPUContextBase

	
REGS = ['rip', 'rsp', 'rbp', 'rax', 'rbx', 'rcx', 'rdx', 'rsi', 'rdi', 'r8', 'r9', 'r10', 'r11', 'r12', 'r13', 'r14', 'r15']

	

	
REGS_ALL = {'ah': '(self.rax>>8) & 0xff', 'al': 'self.rax & 0xff', 'ax': 'self.rax & 0xffff', 'bh': '(self.rbx>>8) & 0xff', 'bl': 'self.rbx & 0xff', 'bp': 'self.rbp & 0xffff', 'bpl': 'self.rbp & 0xff', 'bx': 'self.rbx & 0xffff', 'ch': '(self.rcx>>8) & 0xff', 'cl': 'self.rcx & 0xff', 'cx': 'self.rcx & 0xffff', 'dh': '(self.rdx>>8) & 0xff', 'di': 'self.rdi & 0xffff', 'dil': 'self.rdi & 0xff', 'dl': 'self.rdx & 0xff', 'dx': 'self.rdx & 0xffff', 'eax': 'self.rax & 0xffffffff', 'ebp': 'self.rbp & 0xffffffff', 'ebx': 'self.rbx & 0xffffffff', 'ecx': 'self.rcx & 0xffffffff', 'edi': 'self.rdi & 0xffffffff', 'edx': 'self.rdx & 0xffffffff', 'esi': 'self.rsi & 0xffffffff', 'esp': 'self.rsp & 0xffffffff', 'ip': 'self.rip', 'r10': 'self.r10', 'r10b': 'self.r10 & 0xff', 'r10d': 'self.r10 & 0xffffffff', 'r10w': 'self.r10 & 0xffff', 'r11': 'self.r11', 'r11b': 'self.r11 & 0xff', 'r11d': 'self.r11 & 0xffffffff', 'r11w': 'self.r11 & 0xffff', 'r12': 'self.r12', 'r12b': 'self.r12 & 0xff', 'r12d': 'self.r12 & 0xffffffff', 'r12w': 'self.r12 & 0xffff', 'r13': 'self.r13', 'r13b': 'self.r13 & 0xff', 'r13d': 'self.r13 & 0xffffffff', 'r13w': 'self.r13 & 0xffff', 'r14': 'self.r14', 'r14b': 'self.r14 & 0xff', 'r14d': 'self.r14 & 0xffffffff', 'r14w': 'self.r14 & 0xffff', 'r15': 'self.r15', 'r15b': 'self.r15 & 0xff', 'r15d': 'self.r15 & 0xffffffff', 'r15w': 'self.r15 & 0xffff', 'r8': 'self.r8', 'r8b': 'self.r8 & 0xff', 'r8d': 'self.r8 & 0xffffffff', 'r8w': 'self.r8 & 0xffff', 'r9': 'self.r9', 'r9b': 'self.r9 & 0xff', 'r9d': 'self.r9 & 0xffffffff', 'r9w': 'self.r9 & 0xffff', 'rax': 'self.rax', 'rbp': 'self.rbp', 'rbx': 'self.rbx', 'rcx': 'self.rcx', 'rdi': 'self.rdi', 'rdx': 'self.rdx', 'rip': 'self.rip', 'rsi': 'self.rsi', 'rsp': 'self.rsp', 'si': 'self.rsi & 0xffff', 'sil': 'self.rsi & 0xff', 'sp': 'self.rsp & 0xffff', 'spl': 'self.rsp & 0xff'}

	

	
r10

	

	
r11

	

	
r12

	

	
r13

	

	
r14

	

	
r15

	

	
r8

	

	
r9

	

	
rax

	

	
rbp

	

	
rbx

	

	
rcx

	

	
rdi

	

	
rdx

	

	
rip

	

	
rsi

	

	
rsp

	

x86

	
class revenge.cpu.contexts.x86.X86Context(process, diff=None, **registers)

	Bases: revenge.cpu.contexts.CPUContextBase

	
REGS = ['eip', 'esp', 'ebp', 'eax', 'ebx', 'ecx', 'edx', 'esi', 'edi']

	

	
REGS_ALL = {'ah': '(self.eax>>8) & 0xff', 'al': 'self.eax & 0xff', 'ax': 'self.eax & 0xffff', 'bh': '(self.ebx>>8) & 0xff', 'bl': 'self.ebx & 0xff', 'bp': 'self.ebp & 0xffff', 'bpl': 'self.ebp & 0xff', 'bx': 'self.ebx & 0xffff', 'ch': '(self.ecx>>8) & 0xff', 'cl': 'self.ecx & 0xff', 'cx': 'self.ecx & 0xffff', 'dh': '(self.edx>>8) & 0xff', 'di': 'self.edi & 0xffff', 'dil': 'self.edi & 0xff', 'dl': 'self.edx & 0xff', 'dx': 'self.edx & 0xffff', 'eax': 'self.eax', 'ebp': 'self.ebp', 'ebx': 'self.ebx', 'ecx': 'self.ecx', 'edi': 'self.edi', 'edx': 'self.edx', 'eip': 'self.eip', 'esi': 'self.esi', 'esp': 'self.esp', 'ip': 'self.eip', 'si': 'self.esi & 0xffff', 'sil': 'self.esi & 0xff', 'sp': 'self.esp & 0xffff', 'spl': 'self.esp & 0xff'}

	

	
eax

	

	
ebp

	

	
ebx

	

	
ecx

	

	
edi

	

	
edx

	

	
eip

	

	
esi

	

	
esp

	

arm

	
class revenge.cpu.contexts.arm.ARMContext(process, diff=None, **registers)

	Bases: revenge.cpu.contexts.CPUContextBase

	
REGS = ['pc', 'sp', 'r0', 'r1', 'r2', 'r3', 'r4', 'r5', 'r6', 'r7', 'r8', 'r9', 'r10', 'r11', 'r12', 'lr']

	

	
REGS_ALL = {}

	

	
lr

	

	
pc

	

	
r0

	

	
r1

	

	
r10

	

	
r11

	

	
r12

	

	
r2

	

	
r3

	

	
r4

	

	
r5

	

	
r6

	

	
r7

	

	
r8

	

	
r9

	

	
sp

	

Assembly

Abstraction for the assembly instructions.

Assembly Instruction

	
class revenge.cpu.AssemblyInstruction(process, address=None)

	Bases: object

Represents an assembly instruction.

	
property address

	Address where this instruction is located.

	Type

	Pointer

	
property address_next

	Address of instruction following this one.

	Type

	Pointer

	
property args_str

	Operation arguments as a string.

	Type

	str

	
property args_str_resolved

	Attempt to resolve addresses in the args str into symbols.

	Type

	str

	
classmethod from_frida_dict(process, d)

	Builds this assembly instruction from a frida dictionary, ala Instruction.parse()

	
property groups

	List of descriptive groups that this instruction belongs to.

	Type

	list

	
property mnemonic

	Operation mnemonic.

	Type

	str

	
property operands

	List of operands.

	Type

	list

	
property registers_read

	List of registers that are read by this instruction.

	Type

	list

	
property registers_written

	List of registers written by this instruction.

	Type

	list

	
property size

	Size of this instruction in bytes.

	Type

	int

Assembly Block

	
class revenge.cpu.assembly.instruction.AssemblyBlock(process, address)

	Bases: object

Represents an assembly block.

Devices

	
class revenge.devices.BaseDevice

	Bases: object

	
Process(*args, **kwargs)

	

	
property platform

	What platform is this?

	Type

	str

	
property processes

	Currently running processes

	Type

	list

	
resume(pid)

	Resume a given process.

	
suspend(pid)

	Suspend a given process.

Process

	
class revenge.devices.process.process.Process(name, pid, ppid=None)

	Bases: object

Describes a process on this device.

	Parameters

	
	name (str) – What is the name of this process

	pid (int) – Process ID

	ppid (int, optional) – Process Parent ID

	
property name

	Process name.

	Type

	str

	
property pid

	Process ID

	Type

	int

	
property ppid

	Process Parent ID

	Type

	int

Processes

	
class revenge.devices.process.processes.Processes(processes=None)

	Bases: object

List of process objects.

	Parameters

	processes (list, optional) – List of processes.

Examples

List the process objects
list(procs)

AndroidDevice

	
revenge.devices.AndroidDevice.applications

	

	
revenge.devices.AndroidDevice.arch

	Returns the arch of this android device.

	
revenge.devices.AndroidDevice.frida_server_running

	

	
revenge.devices.AndroidDevice.platform

	What platform is this?

	Type

	str

	
revenge.devices.AndroidDevice.processes

	Currently running processes

	Type

	list

	
revenge.devices.AndroidDevice.version

	Returns android version for this device.

	Type

	str

LocalDevice

Connect to whatever this is locally running on.

	param engine

	What engine to use? Defualt: frida

	type engine

	str, optional

	
revenge.devices.LocalDevice.platform

	What platform is this?

	Type

	str

	
revenge.devices.LocalDevice.processes

	Currently running processes

	Type

	list

Errors

	
class revenge.native_error.NativeError(process, errno=None)

	Bases: object

Represents a error as defined by the native operating system.

	Parameters

	
	process (revenge.Process) – Process object

	errno (int, optional) – The error number for this error

This object currently supports Linux type “errno” numbers.

Examples

Normally you will be given the object, but you can
instantiate it yourself as well
e = NativeError(process, 0)

print(e)
"Success"

assert e.description == "Success"

	
property description

	String description of this error.

	Type

	str

	
property errno

	Error number for this error.

	Type

	int

Exceptions

	
class revenge.native_exception.NativeException(context, backtrace=None, type=None, memory_operation=None, memory_address=None)

	Bases: object

	
TYPES = ['abort', 'access-violation', 'illegal-instruction', 'arithmetic', 'breakpoint', 'system']

	

	
property address

	Address of this exception.

	Type

	int

	
property memory_address

	Address of memory exception.

	Type

	int

	
property memory_operation

	Type of memory operation performed at exception.

Enum: read, write, execute

	Type

	str

	
property type

	What type of native exception? One of abort, access-violation, illegal-instruction, arithmetic, breakpoint, system

	Type

	str

Functions

Functions

	
class revenge.functions.Functions(process)

	Bases: object

Represents functions.

Examples

This is meant to be used like a dictionary

Lookup MemoryBlock for function main
main = functions["main"]

Lookup what function an address belongs to
assert functions[main.address] == b"main"

Add function info
functions["func1"] = process.memory[<func1 range here>]

Loop through function names
for name in functions:
 pass

Print out functions as table
print(functions)

Check if a function name exists
assert "main" in functions

Check if an address belongs to one of the known functions
assert 0x12345 in functions

Not sure why you'd want to do this, but you can
functions[0x1000:0x2000] = "some_function"

	
lookup_address(address)

	Lookup a function based on address.

	Parameters

	address (int, MemoryBytes) – Address to lookup

	Returns

	Name of function or None

	Return type

	bytes

Examples

functions.lookup_address(0x12345) == b"some_function"

	
lookup_name(name)

	Lookup MemoryBytes for a given name.

	Parameters

	name (str, bytes) – Name of function

	Returns

	Corresponding MemoryBytes object or None.

	Return type

	MemoryBytes

Examples

main = functions.lookup_name("main")

	
set_function(name, memory_bytes)

	Adds a function entry. Usually not done manually…

	Parameters

	
	name (str, bytes) – Name of function

	memory_bytes (MemoryBytes) – MemoryBytes for function

Process

	
class revenge.process.Process(target, resume=False, verbose=False, load_symbols=None, envp=None, engine=None, ignore_exceptions=False)

	Bases: object

Represents a process.

	Args:
	
	target (str, int, list): File name or pid to attach to. If target
	is a list, it will be set as argv.

resume (bool, optional): Resume the binary if need be after loading?
verbose (bool, optional): Enable verbose logging
load_symbols (list, optional): Only load symbols from those modules

in the list. Saves some startup time. Can use glob (‘libc*’)

	envp (dict, optional): Specify what you want the environment
	pointer list to look like. Defaults to whatever the current
envp is.

	engine (revenge.engines.Engine): Instantiated Engine for this
	process

	ignore_exceptions (bool): Should we not attempt to generically
	catch process exceptions? Default is False.

	Examples:
	# Kick off ls
p = revenge.Process("/bin/ls")

Kick off ls for /tmp with custom environment
p = revenge.Process(["/bin/ls","/tmp/"], envp={'var1':'thing1'})

#
Interaction
#

Write to stdin
p.stdin(b"hello

“)

Read from stdout
p.stdout(16)

Read up to expected output in stdout
p.stdout(“expected”)

Interact like a shell
p.interactive()

	
property BatchContext

	Returns a BatchContext class for this process.

Example

with process.BatchContext() as context:
 something(context=context)

Represents a context used to send many commands to a frida script.

	Parameters

	
	process (revenge.Process) – Process this batch is running under.

	send_buffer_size (int, optional) – How big of a buffer to have
before sending. (default: 1024)

	return_buffer_size (int, optional) – How big of a buffer to have
before returning (default: 1024) If -1, do not return anything.

	on_message (callable, optional) – Callable to be called when we
recieve information back. By default, returned information
will be dropped.

	run_script_generic (callable, optional) – Which run_script_generic
to use for calling? (default: process.run_script_generic)

	handler_pre (str, optional) – Something to optionally run before
iterating over the strings provided.

	handler_post (str, optional) – Something to optionally run after
iterating over the strings provided.

Example

with process.BatchContext():
 for i in range(255):
 do_something

This Context will simply queue up a bunch of strings, which will be fed
into the thread and executed sequentially.

	
property alive

	Is this process still alive?

	Type

	bool

	
property arch

	What architecture? (x64, ia32, arm, others?)

	Type

	str

	
property argv

	argv for this process instantitation.

	Type

	list

	
property bits

	How many bits is the CPU?

	Type

	int

	
property device

	What device is this process associated with?

	Type

	revenge.devices.BaseDevice

	
property device_platform

	Wrapper to discover the device’s platform.

	
property endianness

	Determine which endianness this binary is. (little, big)

	
property engine

	The current engine revenge is using.

	
property entrypoint

	Returns the entrypoint for this running program.

	Type

	int

	
property file_name

	The base file name.

	Type

	str

	
property file_type

	Guesses the file type.

	
interactive()

	Go interactive. Return back to your shell with ctrl-c.

	
property pid

	

	
quit()

	Call to quit your session without exiting. Do NOT continue to use this object after.

If you spawned the process, it will be killed. If you attached to the
process, frida will be cleaned out, detatched, and the process should
continue normally.

	
resume()

	Resume execution of any current breakpoint hit or suspended thread.

	
stderr(n)

	Read n bytes from stderr.

	Parameters

	n (int, str, bytes) – Number of bytes to read or string to expect.
If no value is given, it’s presumed you are trying to read
all currently queued output.

	Returns

	Output of stderr

	Return type

	bytes

	
stdin(thing)

	Write thing to stdin.

	Parameters

	thing (str, bytes) – If str, it will be encoded as latin-1.

Note: There’s no newline auto appended. Remember to add one if you want it.

	
stdout(n)

	Read n bytes from stdout.

	Parameters

	n (int, str, bytes) – Number of bytes to read or string to expect.
If no value is given, it’s presumed you are trying to read
all currently queued output.

	Returns

	Output of stdout

	Return type

	bytes

	
property target

	Target for this session.

	Type

	str, int

	
target_type(x)

	

	
property verbose

	Output extra debugging information.

	Type

	bool

Memory

Memory

	
class revenge.memory.Memory(engine)

	Bases: object

Class to simplify getting and writing things to memory.

Examples

Read a signed 8-bit int from address
memory[0x12345].int8

Returns MemoryBytes object for memory
memory[0x12345:0x12666]

Write int directly to memory
memory[0x12345] = types.Int8(12)

Write string directly to memory
memory[0x12345] = types.StringUTF8("hello!")

	
alloc(size)

	Allocate size bytes of memory and get a MemoryBytes object back to use it.

	Parameters

	size (int) – How many bytes to allocate.

	Returns

	Object for the new memory location.

	Return type

	revenge.memory.MemoryBytes

	
alloc_string(s, encoding='latin-1')

	Short-hand to run alloc of appropriate size, then write in the string.

	Parameters

	
	s (bytes, str) – String to allocate

	encoding (str, optional) – How to encode the string if passed in as type str.

	
alloc_struct(struct)

	Short-hand to alloc appropriate space for the struct and write it in.

	Parameters

	struct (revenge.types.Struct) – The struct to write into memory.

	Returns

	The original struct, but now bound to the
new memory location.

	Return type

	revenge.types.Struct

	
describe_address(address, color=False)

	Takes in address and attempts to return a better description of what’s there.

	Parameters

	
	address (int) – What address to describe

	color (bool, optional) – Should the description be colored?
(default: False)

	Returns

	description of the address

	Return type

	str

	
find(*args, **kwargs)

	Search for thing in memory. Must be one of the defined types.

	
property maps

	Return a list of memory ranges that are currently allocated.

MemoryBytes

	
class revenge.memory.MemoryBytes(engine, address, address_stop=None)

	Bases: object

Abstracting what memory location is.

	Parameters

	
	engine (revenge.engines.Engine) – The engine this is tied to.

	address (int) – Starting address of the memory location.

	address_stop (int, optional) – Optional stopping memory location.

Examples

Trace specifically the function "win"
win = process.memory['a.out:win']
trace = process.techniques.NativeInstructionTracer(exec=True)

This will populate the trace
win("input", techniques=trace)
print(trace)

	
property address

	Address of this MemoryBytes.

	Type

	Pointer

	
property address_stop

	Stop address of this MemoryBytes.

	Type

	Pointer

	
property argument_types

	Returns the registered arguments types for this function or
None if none have been found/registered.

	Type

	tuple

	
property breakpoint

	Does this address have an active breakpoint?

	Type

	bool

	
property bytes

	Return this as raw bytes.

	Type

	bytes

	
cast(cast_to)

	Returns this memory cast to whatever type you give it.

Examples

ptr = memory.cast(types.Pointer)

struct = types.Struct()
struct.add_member('my_int', types.Int)
struct.add_member('my_pointer', types.Pointer)
struct = memory.cast(struct)

	
property double

	Read as double val

	
property float

	Read as float val

	
free()

	bool: Free this memory location. This is only valid if this memory location has been allocated by us.

	
property implementation

	

	
property instruction

	Returns an assembly instruction parsed from what is in memory at this location.

	Type

	AssemblyInstruction

	
property instruction_block

	Returns an AssemblyBlock starting at this instruction.

	Type

	AssemblyBlock

	
property int16

	Signed 16-bit int

	
property int32

	Signed 32-bit int

	
property int64

	Signed 64-bit int

	
property int8

	Signed 8-bit int

	
property name

	Descriptive name for this address. Optional.

	Type

	str

	
property pointer

	Read as pointer val

	
property replace

	

	
property replace_on_message

	Optional callable to be called if/when something inside the function replace sends data back.

Example

If you just wanted to print out the messages that came back
def on_message(x,y):
 print(x,y)

strlen.replace_on_message = on_message

	Type

	callable

	
property return_type

	What’s the return type for this? Only valid if this is a function.

	
property size

	Size of this MemoryBytes. Only valid if it was generated as a slice, alloc or something else that has known size.

	Type

	int

	
property string_ansi

	Read as ANSI string

	
property string_utf16

	Read as utf-16 string

	
property string_utf8

	Read as utf-8 string

	
property struct

	Write as a struct.

Example

struct = types.Struct()
struct.add_member('test1', types.Int32(-5))
struct.add_member('test2', types.Int8(-12))
struct.add_member('test3', types.UInt16(16))
process.memory[0x12345].struct = struct

Or
process.memory[0x12345] = struct

	
property uint16

	Unsigned 16-bit int

	
property uint32

	Unsigned 32-bit int

	
property uint64

	Unsigned 64-bit int

	
property uint8

	Unsigned 8-bit int

MemoryRange

	
class revenge.memory.MemoryRange(engine, base, size, protection, file=None)

	Bases: object

	
property base

	Base address for this range.

	Type

	int

	
property executable

	Is this range executable?

	Type

	bool

	
property file

	File backing this memory range, or None.

	Type

	str

	
property file_offset

	Offset into backing file or None.

	Type

	int

	
property protection

	Protection for this range.

	Type

	str

	
property readable

	Is this range readable?

	Type

	bool

	
set_protection(read, write, execute)

	Sets the protection for this memory page.

	Parameters

	
	read (bool) – Allow read?

	write (bool) – Allow write?

	execute (bool) – Allow execute?

This will call appropriate mprotect or similar. This can be done
implicitly from the .protection property.

	
property size

	Size for this range.

	Type

	int

	
property writable

	Is this range writable?

	Type

	bool

MemoryFind

	
class revenge.memory.MemoryFind(engine, thing, ranges=None)

	Bases: object

	
property completed

	Is this search completed?

	Type

	bool

	
property ranges

	

	
property search_string

	The search string for this thing.

	
sleep_until_completed()

	This call sleeps and only returns once the search is completed.

	
property thing

	What we’re looking for.

Modules

Modules

	
class revenge.modules.Modules(process)

	Bases: object

	
_flush_cache()

	Make sure the next time we’re hit is a full one.

	
_register_plugin(plugin, name)

	Registers this plugin to be exposed as a module plugin.

	Parameters

	
	plugin (callable) – A class constructor. Must take an argument for
the current module

	name (str) – What will this be called?

The plugin will be instantiated at most once per module instance, and
done only when referenced.

Examples

class MyPlugin:
 @classmethod
 def _modules_plugin(klass, module):
 self = klass()
 self._module = module
 return self

process.modules._register_plugin(MyPlugin._modules_plugin, "myplugin")

This first call will instantiate the plugin
process.modules['proc_name'].myplugin

	
load_library(library)

	Dynamically load a library into the program.

	Parameters

	library (str) – The full path to the library on the process machine

	Returns

	RetuRns the new loaded module or None on error.

	Return type

	revenge.modules.Module

Examples

selinux = process.modules.load_library("/lib/x86_64-linux-gnu/libselinux.so.1")

This will eventually be implemented across all platforms. For now,
it only works on linux platforms.

	
lookup_offset(symbol)

	Lookup raw file offset to symbol.

	Returns

	(module_name, offset) or None if cannot resolve

	Return type

	tuple

See examples from modules.lookup_symbol

	
lookup_symbol(symbol)

	Generically resolve a symbol.

Examples

resolve_symbol(“:strlen”) -> returns address of strlen resolved globally.
resolve_symbol(“strlen”) -> equivalent to above
resolve_symbol(“strlen+0xf”) -> strlen offset by 0xf
resolve_symbol(“a.out:main”) -> returns address of main resolved to a.out.
resolve_symbol(0x12345) -> returns symbol at that address.

	
property modules

	Return list of modules.

	Type

	list

Module

	
class revenge.modules.Module(process, name, base, size, path)

	Bases: object

	
property base

	Base address this module is loaded at.

	Type

	int

	
property elf

	Returns ELF object, if applicable, otherwise None.

	
property file

	Opened file reader to a local copy of this module.

	Type

	io.BufferReader

	
property name

	Module name.

	Type

	str

	
property path

	Module path.

	Type

	str

	
property pe

	Returns PE object, if applicable, otherwise None.

	
property plt

	Location of PLT for this module. Returns None if not known.

	Type

	int

	
property size

	Size of this module.

	Type

	int

	
property symbols

	symbol name -> address for this binary.

	Type

	dict

Symbols

Symbol

	
class revenge.symbols.Symbol(process, name=None, address=None)

	Bases: object

Represents a binary symbol.

	Parameters

	
	process – Process object

	name (str, optional) – Name of this symbol

	address (int, optional) – Address of this symbol

	
property address

	Address of this Symbol.

	Type

	int

	
property memory

	Convenience property to grab a memory object for this symbol.

	Type

	revenge.memory.MemoryBytes

	
property name

	Name of this symbol.

	Type

	str

	
startswith(x)

	Passthrough to check if the symbol name starts with some string.

	Returns

	bool

Threads

Threads

Threads class object is what you get when you request Process.threads.

	
class revenge.threads.Threads(process)

	Bases: object

	
_register_plugin(plugin, name)

	Registers this plugin to be exposed as a thread plugin.

	Parameters

	
	plugin (callable) – A class constructor. Must take an argument for
the current thread

	name (str) – What will this be called?

The plugin will be instantiated at most once per thread instance, and
done only when referenced.

Examples

class MyPlugin:
 @classmethod
 def _thread_plugin(klass, thread):
 self = klass()
 self._thread = module
 return self

process.threads._register_plugin(MyPlugin._thread_plugin, "myplugin")

This first call will instantiate the plugin
process.threads[1234].myplugin

	
create(callback)

	Create and start a new thread on the given callback.

	Parameters

	callback – Pointer to function to start the thread on. This can be
created via CModule, NativeCallback or use an existing
function in the binary

	Returns

	The new thread that was created or None if
either the thread create failed or the thread finished before this
method returned.

	Return type

	revenge.threads.Thread

Example

Create a stupid callback that just spins
func = process.memory.create_c_function("void func() { while (1) { ; } }")

Start the thread
t = process.threads.create(func.address)
assert isinstance(t, revenge.threads.thread.Thread)

View it running
print(process.threads)

Grab the return value (in this case the thread won't end though)
return_val = t.join()

	
property threads

	Current snapshop of active threads.

Thread

The Thread class is an actual description of the thread itself.

	
class revenge.threads.Thread(process, info)

	Bases: object

Defines a process thread.

	Parameters

	info (dict) – frida thread info dict

Examples

Grab your thread
thread = process.threads[tid]

Wait for this thread to return
thread.join()

Check out any exceptions that may have been thrown on this thread
thread.exceptions

Check out the attached trace object
thread.trace

	
property breakpoint

	Is this thread at a breakpoint?

	Type

	bool

	
property context

	The current context for this thread.

	Type

	revenge.cpu.contexts.CPUContext

	
property exceptions

	Exceptions that have been caught generically for this thread.

	Type

	list

	
property id

	Thread ID

	Return type

	int

	
join()

	Traditional thread join. Wait for thread to exit and return the thread’s return value.

	
kill()

	Attempts to kill this thread.

Note

If you’re having trouble killing the thread, be sure your thread is
killable.

For pthreads, that means: pthread_setcancelstate(0, 0); pthread_setcanceltype(1,0)

	
property module

	What module is the thread’s program counter in? i.e.:
libc-2.27.so.

	Return type

	str

	
property pc

	The current program counter/instruction pointer.

	Return type

	int

	
property state

	Thread state, such as ‘waiting’, ‘suspended’

	Return type

	str

	
property trace

	Returns Trace object if this thread is currently being traced, otherwise None.

	Type

	revenge.tracer.instruction_tracer.Trace

Tracing

This is handled now as a technique. See
NativeInstructionTracer

Native Types

	
class revenge.types.Basic

	Bases: revenge.types.BasicBasic

	
property js

	String that can be fed into js.

	
class revenge.types.BasicBasic

	Bases: object

	
property memory

	Instantiate this type to an active memory location for getting
and setting.

Examples

struct = types.Struct()
struct.add_member('my_int', types.Int)
struct.add_member('my_pointer', types.Pointer)

struct.memory = 0x12345
OR
struct.memory = 'a.out:symb'
OR
struct.memory = process.memory[<whatever>]

	
class revenge.types.Char

	Bases: revenge.types.Int8

	
type = 'char'

	

	
class revenge.types.Double

	Bases: revenge.types.Float

	
ctype = 'double'

	

	
sizeof = 8

	

	
type = 'double'

	

	
class revenge.types.Float

	Bases: revenge.types.FloatBasic, float

	
ctype = 'float'

	

	
property js

	

	
sizeof = 4

	

	
type = 'float'

	

	
class revenge.types.FloatBasic

	Bases: object

	
class revenge.types.Int

	Bases: revenge.types.Int32

	
type = 'int'

	

	
class revenge.types.Int16

	Bases: revenge.types.Basic, int

	
ctype = 'short'

	

	
sizeof = 2

	

	
type = 'int16'

	

	
class revenge.types.Int32

	Bases: revenge.types.Basic, int

	
ctype = 'int'

	

	
sizeof = 4

	

	
type = 'int32'

	

	
class revenge.types.Int64

	Bases: revenge.types.Basic, int

	
ctype = 'long'

	

	
property js

	String that can be fed into js.

	
sizeof = 8

	

	
type = 'int64'

	

	
class revenge.types.Int8

	Bases: revenge.types.Basic, int

	
ctype = 'char'

	

	
sizeof = 1

	

	
type = 'int8'

	

	
class revenge.types.Long

	Bases: revenge.types.Int64

	
type = 'long'

	

	
class revenge.types.Padding(size)

	Bases: revenge.types.BasicBasic

Defines the spacing between struct entries.

Example

struct = types.Struct()
struct['one'] = types.Int8
struct['pad1'] = types.Padding(3)
struct['two'] = types.Int16

	
class revenge.types.Pointer

	Bases: revenge.types.UInt64

	
ctype = 'void *'

	

	
property js

	String that can be fed into js.

	
property sizeof

	

	
type = 'pointer'

	

	
class revenge.types.Short

	Bases: revenge.types.Int16

	
type = 'short'

	

	
class revenge.types.StringUTF16

	Bases: revenge.types.BasicBasic, str

	
property js

	

	
property sizeof

	

	
type = 'utf16'

	

	
class revenge.types.StringUTF8

	Bases: revenge.types.BasicBasic, str

	
ctype = 'char *'

	

	
property js

	

	
property sizeof

	

	
type = 'utf8'

	

	
class revenge.types.Struct

	Bases: revenge.types.Pointer

Defines a C structure.

Examples

Create a struct
my_struct = types.Struct()
my_struct.add_member('member_1', types.Int)
my_struct.add_member('pad1', types.Padding(1))
my_struct.add_member('member_2', types.Pointer)

Alternatively, add them IN ORDER via dict setter
my_struct = types.Struct()
my_struct['member_1'] = types.Int
my_struct['member_2'] = types.Pointer

Use cast to bind your struct to a location
my_struct = process.memory[0x12345].cast(my_struct)

Or set memory property directly
my_struct.memory = process.memory[0x12345]

Read out the values
my_struct['member_1']
my_struct['member_2']

Write in some new values (this will auto-cast based on struct def)
my_struct['member_1'] = 12

Allocate a struct and use it in a function call
my_struct = process.memory.alloc_struct(my_struct)
process.memory[<some function>](types.Pointer(my_struct))

	
add_member(name, value=None)

	Adds given member to the end of this current structure.

	Parameters

	
	name (str) – Name of the Struct member

	value (revenge.types.all_types) – Type and/or value for member.

Examples

s = revenge.types.Struct()
s.add_member('my_int', revenge.types.Int(12))

Or, just the definition
s = revenge.types.Struct()
s.add_member('my_int', revenge.types.Int)

	
property members

	

	
property name

	

	
property sizeof

	

	
class revenge.types.Telescope(process, address=None, data=None)

	Bases: revenge.types.BasicBasic

	
property address

	Address of this variable.

	Type

	int

	
property description

	String representational description of this telescope.

	Type

	str

	
property memory_range

	Information about the memory range this is in.

	
property next

	Next step in the telescope.

	
property thing

	Whatever this part of the telescope is.

	
class revenge.types.UChar

	Bases: revenge.types.UInt8

	
type = 'uchar'

	

	
class revenge.types.UInt

	Bases: revenge.types.UInt32

	
type = 'uint'

	

	
class revenge.types.UInt16

	Bases: revenge.types.Basic, int

	
ctype = 'unsigned short'

	

	
sizeof = 2

	

	
type = 'uint16'

	

	
class revenge.types.UInt32

	Bases: revenge.types.Basic, int

	
ctype = 'unsigned int'

	

	
sizeof = 4

	

	
type = 'uint32'

	

	
class revenge.types.UInt64

	Bases: revenge.types.Basic, int

	
ctype = 'unsigned long'

	

	
property js

	String that can be fed into js.

	
sizeof = 8

	

	
type = 'uint64'

	

	
class revenge.types.UInt8

	Bases: revenge.types.Basic, int

	
ctype = 'unsigned char'

	

	
sizeof = 1

	

	
type = 'uint8'

	

	
class revenge.types.ULong

	Bases: revenge.types.UInt64

	
type = 'ulong'

	

	
class revenge.types.UShort

	Bases: revenge.types.UInt16

	
type = 'ushort'

	

	
revenge.types.require_process(func)

	

Techniques

	
class revenge.techniques.Technique(process)

	Bases: object

This is a base mix-in class. To implement a technique, you need to extend this class.

	
TYPE = None

	

	
TYPES = ('stalk', 'replace')

	

	
apply(threads=None)

	Applies this technique, optionally to the given threads.

	
remove()

	Removes this technique.

	
property threads

	Threads that are being traced by this object.

	Type

	list

	
class revenge.techniques.Techniques(process)

	Bases: object

	
append(item)

	

Techniques

	Stalk Techniques
	NativeInstructionCounter

	NativeInstructionTracer

	NativeTimelessTracer

	About

	Replace Techniques
	About

Stalk Techniques

	NativeInstructionCounter

	NativeInstructionTracer

	NativeTimelessTracer

About

Stalk techniques require stalking individual threads.

Pros:

	High granularity

	Can follow unexpected paths and behaviors

Cons:

	Can only have 1 running per thread

	Possibly more overhead than replace techniques

NativeInstructionCounter

The NativeInstructionCounter’s purpose is to allow you to more easily count
the number of instructions executed. Moreover, it also allows you to count
other things, such as the number of calls, returns, or blocks. This can be
useful when performing execution length analysis to find new paths.

NativeInstructionCounter

	
class revenge.techniques.native_instruction_counter.NativeInstructionCounter(process, from_modules=None, call=False, ret=False, exec=False, block=False, compile=False, exclude_ranges=None)

	Bases: revenge.techniques.Technique

Counts instructions executed.

	Parameters

	
	process – Base process instantiation

	from_modules (list, optional) – Restrict counting to those
instructions that start from one of the listed modules.

	call (bool, optional) – Count calls

	ret (bool, optional) – Count rets

	exec (bool, optional) – Count all instructions

	block (bool, optional) – Count blocks

	compile (bool, optional) – Count Frida instruction compile

	exclude_ranges (list, optional) – [low, high] range pairs to exclude
any trace items from.

Examples

With no args, it will count individual assembly instructions
executed
counter = process.techniques.NativeInstructionCounter()

Need to apply it to use it
counter.apply()

Resume the process to get execution going again
process.resume()

Some point later, print out the count
print(counter)

Can also be used as technique for specific call
strlen = process.memory["strlen"]
counter = process.techniques.NativeInstructionCounter()
strlen("hello", techniques=counter)
print(counter)

	
TYPE = 'stalk'

	

	
apply(threads=None)

	Applies this technique, optionally to the given threads.

	
remove()

	Removes this technique.

Counter

	
class revenge.techniques.native_instruction_counter.Counter(thread, script)

	Bases: object

	
property count

	Number of instructions executed.

	Type

	int

	
stop()

	Stop tracing.

NativeInstructionTracer

The NativeInstructionTracer’s purpose is to centralize a means of simple
stalking. You can specify what types of instructions to return back, and they
will be returned in a python class object to help with analysis.

Instruction Tracer

	
class revenge.techniques.tracer.NativeInstructionTracer(process, from_modules=None, call=False, ret=False, exec=False, block=False, compile=False, callback=None, exclude_ranges=None, include_function=None)

	Bases: revenge.techniques.Technique

	Parameters

	
	process – Base process instantiation

	from_modules (list, optional) – Restrict trace returns to those that start from one of the listed modules.

	call (bool, optional) – Trace calls

	ret (bool, optional) – Trace rets

	exec (bool, optional) – Trace all instructions

	block (bool, optional) – Trace blocks

	compile (bool, optional) – Trace on Frida instruction compile

	callback (callable, optional) – Callable to call with list of new
instructions as they come in. First arg will be the thread id.

	exclude_ranges (list, optional) – [low, high] range pairs to exclude
any trace items from.

	include_function (optional) – resolvable function name or
memorybytes object. starts tracing when function is entered
and stops tracing when function is exited (call/ret)

Examples

#
Trace all instructions in process except for those in a given range
Apply this to the entire program execution
#

trace = process.techniques.NativeInstructionTracer(exec=True, exclude_ranges=[[0x12345, 0x424242]])

Apply this to the whole program and run
trace.apply()
process.memory[process.entrypoint].breakpoint = False

Print out the trace
print(trace)

#
Trace only blocks starting from a given function call downwards.
Utilize this technique only on a specific call, rather than full program execution
#

trace = process.techniques.NativeInstructionTracer(exec=True, include_function='my_func')
or
my_func = process.memory['my_func']
trace = process.techniques.NativeInstructionTracer(exec=True, include_function=my_func)

my_func(1,2,3, techniques=trace)

Trace object should be populated now
print(trace)

	
TYPE = 'stalk'

	

	
apply(threads=None)

	Applies this technique, optionally to the given threads.

	
remove()

	Removes this technique.

Trace

	
class revenge.techniques.tracer.Trace(process, tid, script, callback=None)

	Bases: object

	
append(item)

	

	
stop()

	Stop tracing.

	
wait_for(address)

	Don’t return until the given address is hit in the trace.

Trace Item

	
class revenge.techniques.tracer.TraceItem(process, item)

	Bases: object

	
property type

	

NativeTimelessTracer

The NativeTimelessTracer’s purpose is to provide a standard means of
performing timeless tracing. It is similar in concept to other timeless
debuggers such as qira [https://qira.me/] and rr [https://rr-project.org/].

Caveats

The major caveat for now is that it is going to be substantially slower than
the other timeless debugger options. Performance will hopefully be improved in
future releases.

Since this is a newer feature, it is currently only tested against:

	Linux (i386 and x64)

Why?

Timeless Debugging (or really, timeless tracing for revenge) is helpful for
more thoroughly inspecting what happens during program execution. Instead of
re-running an application and setting different break points each time, the
tracer will attempt to gather all relevant information at each instruction step
so that you can go forwards and backwards in time of the binary execution
(thus, “timeless”).

revenge’s implementation has a goal of being platform and architecture
independent. Meaning, the same syntax you would use to timeless trace on an
amd64 Windows machine should work on an i386 MacOS or an ARM Linux.

Also, due to revenge’s modularity, the timeless tracer will be used as a
core component to other techniques and analysis engines, making it a building
block, not an endpoint.

How do I use it?

The timeless tracer can be run just like any other
Technique. Once the trace is acquired, you can
manually look through it, or use an Analysis module (coming soon).

NativeTimelessTracer

	
class revenge.techniques.native_timeless_tracer.NativeTimelessTracer(process)

	Bases: revenge.techniques.Technique

Performs timeless tracing.

Examples

#
Global apply
#

Setup the tracer
timeless = process.techniques.NativeTimelessTracer()
timeless.apply()

Continue execution
process.memory[process.entrypoint].breakpoint = False

Keep checking back to your trace
print(timeless)

Grab your specific trace
t = list(timeless)[0]
print(t)
print(t[-50:])

Look at the trace items individually
ti = t[0]
print(ti.context)
print(ti.context.rax)

#
Call apply
#

Also can apply this per-call
time = process.memory['time']
time(0, techniques=timeless)

	
TYPE = 'stalk'

	

	
apply(threads=None)

	Applies this technique, optionally to the given threads.

	
remove()

	Removes this technique.

NativeTimelessTrace

	
class revenge.techniques.native_timeless_tracer.NativeTimelessTrace(process, thread)

	Bases: object

	
start()

	Start tracing.

	
stop()

	Stop tracing.

	
wait_for(address)

	Don’t return until the given address is hit in the trace.

NativeTimelessTraceItem

	
class revenge.techniques.native_timeless_tracer.NativeTimelessTraceItem(process, context=None, depth=None, previous=None)

	Bases: object

	
property context

	

	
classmethod from_snapshot(process, snapshot, previous=None)

	Creates a NativeTimelessTraceItem from a snapshot returned by timeless_snapshot()

	Parameters

	
	process (revenge.Process) – Process object

	snapshot (dict) – Timeless snapshot dictionary

	previous (NativeTimelessTraceItem, optional) – Previous timeless
trace item to use for differential generation

	
property instruction

	Returns the assembly instruction object for this item.

Replace Techniques

About

Replace techniques take advantage of rewriting parts of the binary prior to it
being executed.

Pros:

	Can have as many of these running as needed (so long as they don’t overlap)

	Generally more performant and reliable than stalking

Cons:

	Cannot as easily follow unexpected code paths

	Less granular in some cases

Engines

	
class revenge.engines.Engine(klass, device, *args, **kwargs)

	Bases: object

Base for Revenge Engines.

	
property device

	What device is this process associated with?

	Type

	revenge.devices.BaseDevice

	
resume(pid)

	Resume execution.

	
start_session()

	This call is responsible for getting the engine up and running.

Plugins

	
class revenge.plugins.Plugin

	Bases: object

Base mix-in for plugins.

	
property _is_valid

	Is the plugin valid for this configuration/should it be loaded?

angr

	
class revenge.plugins.angr.Angr(process, thread=None)

	Bases: revenge.plugins.Plugin

Use angr to enrich your reversing.

Examples

Grab current location
thread = list(process.threads)[0]

Load options and state options can be configured
They use the same name but are exposed as attributes here
If you SET any of these, the project will be re-loaded next
time you ask for an object. It will NOT affect the current
object instance you have.
thread.angr.load_options
thread.angr.support_selfmodifying_code
thread.angr.use_sim_procedures
thread.angr.add_options

Ask for a simgr for this location
simgr = thread.angr.simgr

Whoops, we wanted self modifying code!
thread.angr.support_selfmodifying_code = True
simgr = thread.angr.simgr

Use this as you normally would
simgr.explore(find=winner)

	
property exclude_sim_procedures_list

	Which procedures should angr not wrap?

	Type

	bool

	
property load_options

	angr load_options

	
property project

	Returns the angr project for this file.

	
property simgr

	Returns an angr simgr object for the current state.

	
property state

	Returns a state object for the current thread state.

	
property support_selfmodifying_code

	Should angr support self modifying code?

	Type

	bool

	
property use_sim_procedures

	Should angr use sim procedures?

	Type

	bool

Decompiler

Note

The decompiler should be called as a plugin from process.decompiler.

DecompilerBase

	
class revenge.plugins.decompiler.DecompilerBase(process)

	Bases: object

Use this to decompile things.

Examples

Attempt to get corresponding source code from address 0x12345
process.decompiler[0x12345]

Decompile a function
decomp = process.decompiler.decompile_function(0x12345)
Or alternatively, specify it as a string to getitem
decomp = process.decompiler["my_func"]

Programmatically iterate through it
for item in decomp:
 x = decomp[item]
 # stuff

Or print it out to the screen
print(decomp)

See decomp.highlight() as well.

	
decompile_address(address)

	Lookup the corresponding decompiled code for a given address.

	Parameters

	address (int) – The address to look up decompiled code.

	Returns

	Decompiled output
or None if no corresponding decompile was found.

	Return type

	revenge.plugins.decompiler.decompiled.Decompiled

	
decompile_function(address)

	Lookup the corresponding decompiled code for a given function.

	Parameters

	address (int) – The start of the function to decompile.

	Returns

	Decompiled output
or None if no corresponding decompile was found.

	Return type

	revenge.plugins.decompiler.decompiled.Decompiled

Decompiler

	
class revenge.plugins.decompiler.Decompiler(process)

	Bases: revenge.plugins.Plugin

Use this to decompile things.

Examples

Attempt to get corresponding source code from address 0x12345
process.decompiler[0x12345]

Decompile a function
decomp = process.decompiler.decompile_function(0x12345)
Or alternatively, specify it as a string to getitem
decomp = process.decompiler["my_func"]

Programmatically iterate through it
for item in decomp:
 x = decomp[item]
 # stuff

Or print it out to the screen
print(decomp)

See decomp.highlight() as well.

	
decompile_address(address)

	Lookup the corresponding decompiled code for a given address.

	Parameters

	address (int) – The address to look up decompiled code.

	Returns

	Decompiled output
or None if no corresponding decompile was found.

	Return type

	revenge.plugins.decompiler.decompiled.Decompiled

	
decompile_function(address)

	Lookup the corresponding decompiled code for a given function.

	Parameters

	address (int) – The start of the function to decompile.

	Returns

	Decompiled output
or None if no corresponding decompile was found.

	Return type

	revenge.plugins.decompiler.decompiled.Decompiled

	
property imp

	The underlying implementation.

This will be guessed automatically based on what decompilers are
discovered. You can also instantiate your own and assign it directly
to imp.

	Type

	revenge.plugins.decompiler.DecompilerBase

Decompiled

	
class revenge.plugins.decompiler.Decompiled(process, file_name=None)

	Bases: object

	
highlight(thing, color=None)

	Highlight everything in thing with color.

	Parameters

	
	thing (int, list, tuple, trace) – Addresses of things to highlight

	color (str, optional) – Color to use (see DecopmiledItem.highlight)
default: green

Examples

Create a timeless trace
timeless = process.techniques.NativeTimelessTracer()
timeless.apply()
t = list(timeless)[0]

Decompile your function, this can be done at any time
decomp = process.decompiler.decompile_function(0x12345)

Let your program run to grab the trace
process.memory[process.entrypoint].breakpoint = False

Apply the trace to your decomp
decomp.highlight(t)

You can keep the same decomp and apply traces from different timeless runs as well
For instance, if you had a second trace called t2, this would overlay that trace
decomp.highlight(t2)

The things to highlight here must be valid in the current instance of
revenge. This means, if your binary has ASLR, these must be the CURRENT
addresses, with ASLR applied. Highlight will adjust the locations as
needed.

DecompiledItem

	
class revenge.plugins.decompiler.DecompiledItem(process, file_name=None, address=None, src=None, highlight=None)

	Bases: object

	
property address

	Address of this decompiled instruction.

	Type

	int

	
property highlight

	Color to highlight this instruction (or None).

Valid options are: [‘BLACK’, ‘BLUE’, ‘CYAN’, ‘GREEN’, ‘LIGHTBLACK_EX’, ‘LIGHTBLUE_EX’, ‘LIGHTCYAN_EX’, ‘LIGHTGREEN_EX’, ‘LIGHTMAGENTA_EX’, ‘LIGHTRED_EX’, ‘LIGHTWHITE_EX’, ‘LIGHTYELLOW_EX’, ‘MAGENTA’, ‘RED’, ‘WHITE’, ‘YELLOW’]

	Type

	str

	
property src

	Pseudo source for this instruction.

	Type

	str

Dwarf

Dwarf

	
class revenge.plugins.dwarf.Dwarf(process, module=None)

	Bases: revenge.plugins.Plugin

Lookup Dwarf debugging information from the file.

Examples

dwarf = process.modules['*libc'].dwarf

Show all known function names and their address and size
print(dwarf.functions)

Print the first instruction block in main
print(dwarf.functions['main'].instruction_block)

	
add_source_path(path)

	Adds the given path to the list of directories to look for source
code in.

	Parameters

	path (str, bytes) – Path to add to our search

	
property base_address

	What is the binary’s defined base address.

	Type

	int

	
decompile_address(address)

	Lookup the corresponding decompiled code for a given address.

	Parameters

	address (int) – The address to look up decompiled code.

	Returns

	Decompiled output
or None if no corresponding decompile was found.

	Return type

	revenge.plugins.decompiler.decompiled.Decompiled

	
decompile_function(address)

	

	
property decompiler

	‘Decompiler’ using dwarf.

	
property functions

	Dictionary of function_name -> MemoryBytes.

	Type

	dict

	
property has_debug_info

	Does this module actually have debugging info?

	Type

	bool

	
lookup_file_line(address)

	Given the address, try to resolve what the source file name and
line are

	Parameters

	address (int) – Address to lookup file line info

	Returns

	(filename,line) or None, None if it wasn’t found.

	Return type

	tuple

Example

mybin = process.module['mybin']
filename, line = mybin.dwarf.lookup_file_line(mybin.dwarf.functions[b'main'].address)

	
lookup_function(address)

	Lookup corresponding function that contains this address.

	Parameters

	address (int) – Address inside function

	Returns

	The name of the function or None if lookup fails.

	Return type

	bytes

Java

Java

	Java

	JavaClass

Java

	
class revenge.plugins.java.Java(process)

	Bases: revenge.plugins.Plugin

	
property classes

	Returns java classes object.

	Type

	JavaClasses

	
find_active_instance(klass, invalidate_cache=False)

	Look through memory and finds an active instance of the given klass.

	Parameters

	
	klass (str, JavaClass) – The class we want to find already in memory.

	invalidate_cache (bool, optional) – Throw away any current cache.
This should normally not be needed.

	Returns

	Returns JavaClass instance with approrpiate handle server. This
means you can use the object without instantiating it yourself.

Example

MainActivity = p.java.find_active_class("ooo.defcon2019.quals.veryandroidoso.MainActivity")
MainActivity.parse("test")

JavaClass

	
class revenge.plugins.java.java_class.JavaClass

	Bases: object

Handles

	
class revenge.plugins.handles.Handles(process)

	Bases: revenge.plugins.Plugin

Manage process handles.

Examples

Grab a specific handle
handle = process.handles[4]

Print out details about handles
print(process.handles)

	
values()

	

	
class revenge.plugins.handles.Handle(process, handle, name=None)

	Bases: object

Describes a handle.

	Parameters

	
	process (revenge.Process) – Corresponding process.

	handle (int) – The handle identifier.

	name (str, optional) – File backing this handle.

Examples

handle = process.handles[4]

What file/pipe/thing is this a handle to?
print(handle.name)

Read 32 bytes from the beginning of the handle
stuff = handle.read(32, 0)

Read 16 bytes from the current pointer
stuff = handle.read(16)

Write something to the handle
handle.write(b"something")

Write something to the handle at offset 4
handle.write(b"something", 4)

Check the read/write ability on this handle
handle.readable
handle.writable

	
property handle

	The actual handle identifier. This is what the OS uses to identify the handle.

	Type

	int

	
property name

	Name or path to file backing this handle.

	Type

	str

	
property position

	Current position in this handle.

	Type

	int

	
read(n, position=None)

	Reads n bytes, optionally from a given position.

	Parameters

	
	n (int) – How many bytes to read?

	position (int, optional) – Where to read from? Absolute.

	Returns

	Data read from fd or None if there was an error

	Return type

	bytes

When given position argument, this call will return the fd to it’s original position after reading.

	
property readable

	Is this handle readable?

	Type

	bool

	
property writable

	Is this handle writable?

	Type

	bool

	
write(thing, position=None)

	Writes thing into the handle, optionally from a given position.

	Parameters

	
	thing (str, bytes) – What to write

	position (int, optional) – Where to write from? Absolute.

	Returns

	Number of bytes written.

	Return type

	int

Radare2

	
class revenge.plugins.radare2.Radare2(process, module=None)

	Bases: revenge.plugins.Plugin

Use radare2 to enrich reversing information.

Examples

#
Normal enrichment works without connection
Radare2 plugin can enrich a remote instance of r2 with more
information as well.

In different window, open r2
r2 -A /bin/ls
Start up web server
=h& 12345

Connect up to it with revenge
process.radare2.connect("http://127.0.0.1:12345")

Highlight paths that have executed
timeless = process.techniques.NativeTimelessTracer()
timeless.apply()

Do whatever
t = list(timeless)[0]

process.radare2.highlight(t)

	
analyze()

	Ask radare2 to run some auto analysis on this file.

Note

This is NOT run by default due to the fact that it may take a while
to run. If you connect to a remote session that has already run
analysis, you do NOT need to run this.

	
property base_address

	

	
connect(web_server)

	Connect to a separate session to work in tandem.

	Parameters

	web_server (str) – Web server to connect to.

Examples

On existing r2 instance, start web listener on port 12345
=h& 12345

Now tell this r2 plugin to connect to it
process.radare2.connect("http://127.0.0.1:12345")

	
property decompiler

	Either returns an instance of a decompiler (if one is valid) or None.

	
disconnect()

	Disconnect from web server.

	
property file

	

	
highlight(what)

	Highlights an instruction or list of instructions.

	Parameters

	what (int, list, tuple) – Address to highlight.

Note

The addresses should be instantiated from this revenge process.
Highlight will determine the correct offset to use for highlighting
automatically.

This is likely only useful when you have connected to a remote r2
session as you won’t see the color locally.

Android

Anything that you can do with the native process class, you can do on Android.
The only difference is that, for android, a Process.java class is also
exposed to allow higher level interaction with java classes.

Java Classes

Class Enumeration

Java classes are at the core of Android applications. revenge exposes a way
to enumerate the currently loaded classes.

revenge performs reflective inspection of the java classes. This means you
will be able to use tab completion in ipython for methods and fields, as well
as see a definition of the method or field in it’s __repr__.

Note

The loaded classes might change during program execution as the program
itself loads and instantiates new classes. The classes method is always a
snapshot of the currently loaded classes list.

Examples

List all currently loaded classes
process.java.classes

Grab the Math class specifically
Math = process.java.classes['java.lang.Math']

Or use globs
Math = process.java.classes['java.l*.Math']

See what fields/methods exist
dir(Math)

Calling Methods

revenge makes directly calling methods from python easy.

Examples

Grab the android logging class
log = process.java.classes['android.util.Log']

Simply call the method with the required arguments
Ending with () tells revenge to actually do the call
log.w("Hello", "world!")()

Method Override

You can easily override any method’s definition. This uses Frida and thus, you
will have to actually write your override in javascript.

Examples

Grab the math class
Math = process.java.classes['java.lang.Math']

Override the random implementation to be not-so-random
Math.random.implementation = "function () { return 12; }"

Validate that it's our code
Math.random()()
12

Remove override and check that original functionality is back
Math.random.implementation = None
Math.random()()
0.8056030012322106

Instantiated Classes

If an application is saving state in the java class, you may want to interact
specifically with the class instance, rather than just a generic class. You can
do this by finding the instance.

Examples

Grab the class
MainActivity = process.java.classes['*myapp*MainActivity']

Find the active instance
M = process.java.find_active_instance(MainActivity)

Call the method on that specific running instance
M.some_method()()

Batch Calling

Batch calling is the same concept as batch calling for the native process. The
idea is, since the time it takes to send commands from python into the
application and back can be rather slow, we open up a context where we can feed
in a bunch of commands at once. Instead of getting the results back one by one
per call, we get them back in bulk to a message handler that has the
resonsibility to deal with it.

To use batch contexts, you will need to instantiate them inside a with
context. Then provide the context to the calling method so it knows to use that
context.

For CTFs, this is generally used on challenges that require some level of brute
foricing of the flag.

Examples

Coming soon..

Setup

Initially setting up revenge to work with an android emulator involves
using the devices. For this doc, I’ll assume that you already have an
android running, in either emulator or physical form.

Note

You must have root access to the device on which you wish to run
revenge.

Base Connection

Base interactions for revenge will go through the device object.
Instantiating this object will attempt to automatically install, run and
connect to the latest version of frida server for your android.

Examples

from revenge import devices

Connect to the first usb device adb finds
android = devices.AndroidDevice(type="usb")
"<AndroidDevice emulator-5554>"

Connect to device with the given id
android = devices.AndroidDevice(id="emulator-5554")
"<AndroidDevice emulator-5554>"

Installing/Removing APKs

A convenience method exists to install and uninstall apks directly from
revenge.

Examples

android.install("something.apk")
android.uninstall("com.blerg.something")
android.uninstall(android.applications['*something*'])

Shell

You can drop into an interactive shell.

Examples

android.shell()

List Processes/Applications

You can list both running processes and running applications. Applications have
their own class.

revenge.devices.android.applications.AndroidApplications

Examples

android.device.enumerate_processes()
"""
<clip>
 Process(pid=1502, name="tombstoned"),
 Process(pid=1503, name="android.hardware.biometrics.fingerprint@2.1-service"),
 Process(pid=1506, name="iptables-restore"),
 Process(pid=1507, name="ip6tables-restore"),
 Process(pid=1604, name="dhcpclient"),
 Process(pid=1607, name="sh"),
 Process(pid=1608, name="sleep"),
 Process(pid=1619, name="ipv6proxy"),
 Process(pid=1622, name="hostapd"),
 Process(pid=1624, name="dhcpserver"),
 Process(pid=1633, name="system_server"),
 Process(pid=1740, name="com.android.inputmethod.latin"),
 Process(pid=1748, name="com.android.systemui"),
 Process(pid=1790, name="webview_zygote32"),
 Process(pid=1846, name="wpa_supplicant"),
 Process(pid=1851, name="com.android.phone"),
<clip>
"""

List applications
list(android.applications)
"""
<clip>
 Application(identifier="com.android.dialer", name="Phone", pid=2084),
 Application(identifier="com.android.gallery3d", name="Gallery"),
 Application(identifier="com.android.emulator.smoketests", name="Emulator Smoke Tests"),
 Application(identifier="android.ext.services", name="Android Services Library", pid=2566),
 Application(identifier="com.android.packageinstaller", name="Package installer"),
 Application(identifier="com.svox.pico", name="Pico TTS"),
 Application(identifier="com.android.proxyhandler", name="ProxyHandler"),
 Application(identifier="com.android.inputmethod.latin", name="Android Keyboard (AOSP)", pid=1740),
 Application(identifier="org.chromium.webview_shell", name="WebView Shell"),
 Application(identifier="com.android.managedprovisioning", name="Work profile setup"),
<clip>
"""

Running Applications

You can spawn and attach to applications via command-line.

Examples

Launch application and retrieve corresponding revenge.Process instance
p = android.spawn("com.android.email", gated=False, load_symbols="*dex")
<Process <pre-initialized>:4335>

calc = android.applications['*calc*']
p = android.spawn(calc, gated=False, load_symbols="*dex")

If the app is already running, you can just attach
p = android.attach("*calc*", load_symbols="*dex")

Java

This is theoretically supported. However, it is currently only tested in the
context of Android applications (which utilize Java).

Linux

Mac OS

Placing this here for completeness. Theoretically revenge should function
on a Mac, but it is untested.

Windows

	Windows

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 revenge	

 	
 	
 revenge.devices	

 	
 	
 revenge.devices.AndroidDevice	

 	
 	
 revenge.devices.LocalDevice	

 	
 	
 revenge.engines	

 	
 	
 revenge.types	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

_

 	
 	_flush_cache() (revenge.modules.Modules method)

 	_is_valid() (revenge.plugins.Plugin property)

 	
 	_register_plugin() (revenge.modules.Modules method)

 	(revenge.threads.Threads method)

A

 	
 	add_member() (revenge.types.Struct method)

 	add_source_path() (revenge.plugins.dwarf.Dwarf method)

 	address() (revenge.cpu.AssemblyInstruction property)

 	(revenge.memory.MemoryBytes property)

 	(revenge.native_exception.NativeException property)

 	(revenge.plugins.decompiler.DecompiledItem property)

 	(revenge.symbols.Symbol property)

 	(revenge.types.Telescope property)

 	address_next() (revenge.cpu.AssemblyInstruction property)

 	address_stop() (revenge.memory.MemoryBytes property)

 	alive() (revenge.process.Process property)

 	alloc() (revenge.memory.Memory method)

 	alloc_string() (revenge.memory.Memory method)

 	alloc_struct() (revenge.memory.Memory method)

 	analyze() (revenge.plugins.radare2.Radare2 method)

 	Angr (class in revenge.plugins.angr)

 	
 	append() (revenge.techniques.Techniques method)

 	(revenge.techniques.tracer.Trace method)

 	applications (in module revenge.devices.AndroidDevice)

 	apply() (revenge.techniques.native_instruction_counter.NativeInstructionCounter method)

 	(revenge.techniques.native_timeless_tracer.NativeTimelessTracer method)

 	(revenge.techniques.Technique method)

 	(revenge.techniques.tracer.NativeInstructionTracer method)

 	arch (in module revenge.devices.AndroidDevice)

 	arch() (revenge.process.Process property)

 	args_str() (revenge.cpu.AssemblyInstruction property)

 	args_str_resolved() (revenge.cpu.AssemblyInstruction property)

 	argument_types() (revenge.memory.MemoryBytes property)

 	argv() (revenge.process.Process property)

 	ARMContext (class in revenge.cpu.contexts.arm)

 	AssemblyBlock (class in revenge.cpu.assembly.instruction)

 	AssemblyInstruction (class in revenge.cpu)

B

 	
 	base() (revenge.memory.MemoryRange property)

 	(revenge.modules.Module property)

 	base_address() (revenge.plugins.dwarf.Dwarf property)

 	(revenge.plugins.radare2.Radare2 property)

 	BaseDevice (class in revenge.devices)

 	Basic (class in revenge.types)

 	
 	BasicBasic (class in revenge.types)

 	BatchContext() (revenge.process.Process property)

 	bits() (revenge.process.Process property)

 	breakpoint() (revenge.memory.MemoryBytes property)

 	(revenge.threads.Thread property)

 	bytes() (revenge.memory.MemoryBytes property)

C

 	
 	cast() (revenge.memory.MemoryBytes method)

 	changed_registers() (revenge.cpu.contexts.CPUContextBase property)

 	Char (class in revenge.types)

 	classes() (revenge.plugins.java.Java property)

 	completed() (revenge.memory.MemoryFind property)

 	connect() (revenge.plugins.radare2.Radare2 method)

 	context() (revenge.techniques.native_timeless_tracer.NativeTimelessTraceItem property)

 	(revenge.threads.Thread property)

 	count() (revenge.techniques.native_instruction_counter.Counter property)

 	Counter (class in revenge.techniques.native_instruction_counter)

 	CPUContext() (in module revenge.cpu.contexts)

 	CPUContextBase (class in revenge.cpu.contexts)

 	
 	create() (revenge.threads.Threads method)

 	ctype (revenge.types.Double attribute)

 	(revenge.types.Float attribute)

 	(revenge.types.Int16 attribute)

 	(revenge.types.Int32 attribute)

 	(revenge.types.Int64 attribute)

 	(revenge.types.Int8 attribute)

 	(revenge.types.Pointer attribute)

 	(revenge.types.StringUTF8 attribute)

 	(revenge.types.UInt16 attribute)

 	(revenge.types.UInt32 attribute)

 	(revenge.types.UInt64 attribute)

 	(revenge.types.UInt8 attribute)

D

 	
 	decompile_address() (revenge.plugins.decompiler.Decompiler method)

 	(revenge.plugins.decompiler.DecompilerBase method)

 	(revenge.plugins.dwarf.Dwarf method)

 	decompile_function() (revenge.plugins.decompiler.Decompiler method)

 	(revenge.plugins.decompiler.DecompilerBase method)

 	(revenge.plugins.dwarf.Dwarf method)

 	Decompiled (class in revenge.plugins.decompiler)

 	DecompiledItem (class in revenge.plugins.decompiler)

 	Decompiler (class in revenge.plugins.decompiler)

 	decompiler() (revenge.plugins.dwarf.Dwarf property)

 	(revenge.plugins.radare2.Radare2 property)

 	
 	DecompilerBase (class in revenge.plugins.decompiler)

 	describe_address() (revenge.memory.Memory method)

 	description() (revenge.native_error.NativeError property)

 	(revenge.types.Telescope property)

 	device() (revenge.engines.Engine property)

 	(revenge.process.Process property)

 	device_platform() (revenge.process.Process property)

 	disconnect() (revenge.plugins.radare2.Radare2 method)

 	Double (class in revenge.types)

 	double() (revenge.memory.MemoryBytes property)

 	Dwarf (class in revenge.plugins.dwarf)

E

 	
 	eax (revenge.cpu.contexts.x86.X86Context attribute)

 	ebp (revenge.cpu.contexts.x86.X86Context attribute)

 	ebx (revenge.cpu.contexts.x86.X86Context attribute)

 	ecx (revenge.cpu.contexts.x86.X86Context attribute)

 	edi (revenge.cpu.contexts.x86.X86Context attribute)

 	edx (revenge.cpu.contexts.x86.X86Context attribute)

 	eip (revenge.cpu.contexts.x86.X86Context attribute)

 	elf() (revenge.modules.Module property)

 	endianness() (revenge.process.Process property)

 	
 	Engine (class in revenge.engines)

 	engine() (revenge.process.Process property)

 	entrypoint() (revenge.process.Process property)

 	errno() (revenge.native_error.NativeError property)

 	esi (revenge.cpu.contexts.x86.X86Context attribute)

 	esp (revenge.cpu.contexts.x86.X86Context attribute)

 	exceptions() (revenge.threads.Thread property)

 	exclude_sim_procedures_list() (revenge.plugins.angr.Angr property)

 	executable() (revenge.memory.MemoryRange property)

F

 	
 	file() (revenge.memory.MemoryRange property)

 	(revenge.modules.Module property)

 	(revenge.plugins.radare2.Radare2 property)

 	file_name() (revenge.process.Process property)

 	file_offset() (revenge.memory.MemoryRange property)

 	file_type() (revenge.process.Process property)

 	find() (revenge.memory.Memory method)

 	find_active_instance() (revenge.plugins.java.Java method)

 	
 	Float (class in revenge.types)

 	float() (revenge.memory.MemoryBytes property)

 	FloatBasic (class in revenge.types)

 	free() (revenge.memory.MemoryBytes method)

 	frida_server_running (in module revenge.devices.AndroidDevice)

 	from_frida_dict() (revenge.cpu.AssemblyInstruction class method)

 	from_snapshot() (revenge.techniques.native_timeless_tracer.NativeTimelessTraceItem class method)

 	Functions (class in revenge.functions)

 	functions() (revenge.plugins.dwarf.Dwarf property)

G

 	
 	groups() (revenge.cpu.AssemblyInstruction property)

H

 	
 	Handle (class in revenge.plugins.handles)

 	handle() (revenge.plugins.handles.Handle property)

 	Handles (class in revenge.plugins.handles)

 	
 	has_debug_info() (revenge.plugins.dwarf.Dwarf property)

 	highlight() (revenge.plugins.decompiler.Decompiled method)

 	(revenge.plugins.decompiler.DecompiledItem property)

 	(revenge.plugins.radare2.Radare2 method)

I

 	
 	id() (revenge.threads.Thread property)

 	imp() (revenge.plugins.decompiler.Decompiler property)

 	implementation() (revenge.memory.MemoryBytes property)

 	instruction() (revenge.memory.MemoryBytes property)

 	(revenge.techniques.native_timeless_tracer.NativeTimelessTraceItem property)

 	instruction_block() (revenge.memory.MemoryBytes property)

 	Int (class in revenge.types)

 	Int16 (class in revenge.types)

 	
 	int16() (revenge.memory.MemoryBytes property)

 	Int32 (class in revenge.types)

 	int32() (revenge.memory.MemoryBytes property)

 	Int64 (class in revenge.types)

 	int64() (revenge.memory.MemoryBytes property)

 	Int8 (class in revenge.types)

 	int8() (revenge.memory.MemoryBytes property)

 	interactive() (revenge.process.Process method)

J

 	
 	Java (class in revenge.plugins.java)

 	JavaClass (class in revenge.plugins.java.java_class)

 	join() (revenge.threads.Thread method)

 	js() (revenge.types.Basic property)

 	(revenge.types.Float property)

 	(revenge.types.Int64 property)

 	(revenge.types.Pointer property)

 	(revenge.types.StringUTF16 property)

 	(revenge.types.StringUTF8 property)

 	(revenge.types.UInt64 property)

K

 	
 	kill() (revenge.threads.Thread method)

L

 	
 	load_library() (revenge.modules.Modules method)

 	load_options() (revenge.plugins.angr.Angr property)

 	Long (class in revenge.types)

 	lookup_address() (revenge.functions.Functions method)

 	lookup_file_line() (revenge.plugins.dwarf.Dwarf method)

 	
 	lookup_function() (revenge.plugins.dwarf.Dwarf method)

 	lookup_name() (revenge.functions.Functions method)

 	lookup_offset() (revenge.modules.Modules method)

 	lookup_symbol() (revenge.modules.Modules method)

 	lr (revenge.cpu.contexts.arm.ARMContext attribute)

M

 	
 	maps() (revenge.memory.Memory property)

 	members() (revenge.types.Struct property)

 	Memory (class in revenge.memory)

 	memory() (revenge.symbols.Symbol property)

 	(revenge.types.BasicBasic property)

 	memory_address() (revenge.native_exception.NativeException property)

 	memory_operation() (revenge.native_exception.NativeException property)

 	memory_range() (revenge.types.Telescope property)

 	MemoryBytes (class in revenge.memory)

 	MemoryFind (class in revenge.memory)

 	MemoryRange (class in revenge.memory)

 	
 	mnemonic() (revenge.cpu.AssemblyInstruction property)

 	
 module

 	revenge.devices

 	revenge.devices.AndroidDevice

 	revenge.devices.LocalDevice

 	revenge.engines

 	revenge.types

 	Module (class in revenge.modules)

 	module() (revenge.threads.Thread property)

 	Modules (class in revenge.modules)

 	modules() (revenge.modules.Modules property)

N

 	
 	name() (revenge.devices.process.process.Process property)

 	(revenge.memory.MemoryBytes property)

 	(revenge.modules.Module property)

 	(revenge.plugins.handles.Handle property)

 	(revenge.symbols.Symbol property)

 	(revenge.types.Struct property)

 	NativeError (class in revenge.native_error)

 	
 	NativeException (class in revenge.native_exception)

 	NativeInstructionCounter (class in revenge.techniques.native_instruction_counter)

 	NativeInstructionTracer (class in revenge.techniques.tracer)

 	NativeTimelessTrace (class in revenge.techniques.native_timeless_tracer)

 	NativeTimelessTraceItem (class in revenge.techniques.native_timeless_tracer)

 	NativeTimelessTracer (class in revenge.techniques.native_timeless_tracer)

 	next() (revenge.types.Telescope property)

O

 	
 	operands() (revenge.cpu.AssemblyInstruction property)

P

 	
 	Padding (class in revenge.types)

 	path() (revenge.modules.Module property)

 	pc (revenge.cpu.contexts.arm.ARMContext attribute)

 	(revenge.cpu.contexts.CPUContextBase attribute)

 	pc() (revenge.threads.Thread property)

 	pe() (revenge.modules.Module property)

 	pid() (revenge.devices.process.process.Process property)

 	(revenge.process.Process property)

 	platform (in module revenge.devices.AndroidDevice)

 	(in module revenge.devices.LocalDevice)

 	platform() (revenge.devices.BaseDevice property)

 	plt() (revenge.modules.Module property)

 	Plugin (class in revenge.plugins)

 	
 	Pointer (class in revenge.types)

 	pointer() (revenge.memory.MemoryBytes property)

 	position() (revenge.plugins.handles.Handle property)

 	ppid() (revenge.devices.process.process.Process property)

 	Process (class in revenge.devices.process.process)

 	(class in revenge.process)

 	Process() (revenge.devices.BaseDevice method)

 	Processes (class in revenge.devices.process.processes)

 	processes (in module revenge.devices.AndroidDevice)

 	(in module revenge.devices.LocalDevice)

 	processes() (revenge.devices.BaseDevice property)

 	project() (revenge.plugins.angr.Angr property)

 	protection() (revenge.memory.MemoryRange property)

Q

 	
 	quit() (revenge.process.Process method)

R

 	
 	r0 (revenge.cpu.contexts.arm.ARMContext attribute)

 	r1 (revenge.cpu.contexts.arm.ARMContext attribute)

 	r10 (revenge.cpu.contexts.arm.ARMContext attribute)

 	(revenge.cpu.contexts.x64.X64Context attribute)

 	r11 (revenge.cpu.contexts.arm.ARMContext attribute)

 	(revenge.cpu.contexts.x64.X64Context attribute)

 	r12 (revenge.cpu.contexts.arm.ARMContext attribute)

 	(revenge.cpu.contexts.x64.X64Context attribute)

 	r13 (revenge.cpu.contexts.x64.X64Context attribute)

 	r14 (revenge.cpu.contexts.x64.X64Context attribute)

 	r15 (revenge.cpu.contexts.x64.X64Context attribute)

 	r2 (revenge.cpu.contexts.arm.ARMContext attribute)

 	r3 (revenge.cpu.contexts.arm.ARMContext attribute)

 	r4 (revenge.cpu.contexts.arm.ARMContext attribute)

 	r5 (revenge.cpu.contexts.arm.ARMContext attribute)

 	r6 (revenge.cpu.contexts.arm.ARMContext attribute)

 	r7 (revenge.cpu.contexts.arm.ARMContext attribute)

 	r8 (revenge.cpu.contexts.arm.ARMContext attribute)

 	(revenge.cpu.contexts.x64.X64Context attribute)

 	r9 (revenge.cpu.contexts.arm.ARMContext attribute)

 	(revenge.cpu.contexts.x64.X64Context attribute)

 	Radare2 (class in revenge.plugins.radare2)

 	ranges() (revenge.memory.MemoryFind property)

 	rax (revenge.cpu.contexts.x64.X64Context attribute)

 	rbp (revenge.cpu.contexts.x64.X64Context attribute)

 	rbx (revenge.cpu.contexts.x64.X64Context attribute)

 	rcx (revenge.cpu.contexts.x64.X64Context attribute)

 	rdi (revenge.cpu.contexts.x64.X64Context attribute)

 	rdx (revenge.cpu.contexts.x64.X64Context attribute)

 	read() (revenge.plugins.handles.Handle method)

 	readable() (revenge.memory.MemoryRange property)

 	(revenge.plugins.handles.Handle property)

 	
 	registers_read() (revenge.cpu.AssemblyInstruction property)

 	registers_written() (revenge.cpu.AssemblyInstruction property)

 	REGS (revenge.cpu.contexts.arm.ARMContext attribute)

 	(revenge.cpu.contexts.x64.X64Context attribute)

 	(revenge.cpu.contexts.x86.X86Context attribute)

 	REGS_ALL (revenge.cpu.contexts.arm.ARMContext attribute)

 	(revenge.cpu.contexts.x64.X64Context attribute)

 	(revenge.cpu.contexts.x86.X86Context attribute)

 	remove() (revenge.techniques.native_instruction_counter.NativeInstructionCounter method)

 	(revenge.techniques.native_timeless_tracer.NativeTimelessTracer method)

 	(revenge.techniques.Technique method)

 	(revenge.techniques.tracer.NativeInstructionTracer method)

 	replace() (revenge.memory.MemoryBytes property)

 	replace_on_message() (revenge.memory.MemoryBytes property)

 	require_process() (in module revenge.types)

 	resume() (revenge.devices.BaseDevice method)

 	(revenge.engines.Engine method)

 	(revenge.process.Process method)

 	return_type() (revenge.memory.MemoryBytes property)

 	
 revenge.devices

 	module

 	
 revenge.devices.AndroidDevice

 	module

 	
 revenge.devices.LocalDevice

 	module

 	
 revenge.engines

 	module

 	
 revenge.types

 	module

 	rip (revenge.cpu.contexts.x64.X64Context attribute)

 	rsi (revenge.cpu.contexts.x64.X64Context attribute)

 	rsp (revenge.cpu.contexts.x64.X64Context attribute)

S

 	
 	search_string() (revenge.memory.MemoryFind property)

 	set_function() (revenge.functions.Functions method)

 	set_protection() (revenge.memory.MemoryRange method)

 	Short (class in revenge.types)

 	simgr() (revenge.plugins.angr.Angr property)

 	size() (revenge.cpu.AssemblyInstruction property)

 	(revenge.memory.MemoryBytes property)

 	(revenge.memory.MemoryRange property)

 	(revenge.modules.Module property)

 	sizeof (revenge.types.Double attribute)

 	(revenge.types.Float attribute)

 	(revenge.types.Int16 attribute)

 	(revenge.types.Int32 attribute)

 	(revenge.types.Int64 attribute)

 	(revenge.types.Int8 attribute)

 	(revenge.types.UInt16 attribute)

 	(revenge.types.UInt32 attribute)

 	(revenge.types.UInt64 attribute)

 	(revenge.types.UInt8 attribute)

 	sizeof() (revenge.types.Pointer property)

 	(revenge.types.StringUTF16 property)

 	(revenge.types.StringUTF8 property)

 	(revenge.types.Struct property)

 	sleep_until_completed() (revenge.memory.MemoryFind method)

 	
 	sp (revenge.cpu.contexts.arm.ARMContext attribute)

 	(revenge.cpu.contexts.CPUContextBase attribute)

 	src() (revenge.plugins.decompiler.DecompiledItem property)

 	start() (revenge.techniques.native_timeless_tracer.NativeTimelessTrace method)

 	start_session() (revenge.engines.Engine method)

 	startswith() (revenge.symbols.Symbol method)

 	state() (revenge.plugins.angr.Angr property)

 	(revenge.threads.Thread property)

 	stderr() (revenge.process.Process method)

 	stdin() (revenge.process.Process method)

 	stdout() (revenge.process.Process method)

 	stop() (revenge.techniques.native_instruction_counter.Counter method)

 	(revenge.techniques.native_timeless_tracer.NativeTimelessTrace method)

 	(revenge.techniques.tracer.Trace method)

 	string_ansi() (revenge.memory.MemoryBytes property)

 	string_utf16() (revenge.memory.MemoryBytes property)

 	string_utf8() (revenge.memory.MemoryBytes property)

 	StringUTF16 (class in revenge.types)

 	StringUTF8 (class in revenge.types)

 	Struct (class in revenge.types)

 	struct() (revenge.memory.MemoryBytes property)

 	support_selfmodifying_code() (revenge.plugins.angr.Angr property)

 	suspend() (revenge.devices.BaseDevice method)

 	Symbol (class in revenge.symbols)

 	symbols() (revenge.modules.Module property)

T

 	
 	target() (revenge.process.Process property)

 	target_type() (revenge.process.Process method)

 	Technique (class in revenge.techniques)

 	Techniques (class in revenge.techniques)

 	Telescope (class in revenge.types)

 	thing() (revenge.memory.MemoryFind property)

 	(revenge.types.Telescope property)

 	Thread (class in revenge.threads)

 	Threads (class in revenge.threads)

 	threads() (revenge.techniques.Technique property)

 	(revenge.threads.Threads property)

 	Trace (class in revenge.techniques.tracer)

 	trace() (revenge.threads.Thread property)

 	TraceItem (class in revenge.techniques.tracer)

 	TYPE (revenge.techniques.native_instruction_counter.NativeInstructionCounter attribute)

 	(revenge.techniques.native_timeless_tracer.NativeTimelessTracer attribute)

 	(revenge.techniques.Technique attribute)

 	(revenge.techniques.tracer.NativeInstructionTracer attribute)

 	type (revenge.types.Char attribute)

 	(revenge.types.Double attribute)

 	(revenge.types.Float attribute)

 	(revenge.types.Int attribute)

 	(revenge.types.Int16 attribute)

 	(revenge.types.Int32 attribute)

 	(revenge.types.Int64 attribute)

 	(revenge.types.Int8 attribute)

 	(revenge.types.Long attribute)

 	(revenge.types.Pointer attribute)

 	(revenge.types.Short attribute)

 	(revenge.types.StringUTF16 attribute)

 	(revenge.types.StringUTF8 attribute)

 	(revenge.types.UChar attribute)

 	(revenge.types.UInt attribute)

 	(revenge.types.UInt16 attribute)

 	(revenge.types.UInt32 attribute)

 	(revenge.types.UInt64 attribute)

 	(revenge.types.UInt8 attribute)

 	(revenge.types.ULong attribute)

 	(revenge.types.UShort attribute)

 	
 	type() (revenge.native_exception.NativeException property)

 	(revenge.techniques.tracer.TraceItem property)

 	TYPES (revenge.native_exception.NativeException attribute)

 	(revenge.techniques.Technique attribute)

U

 	
 	UChar (class in revenge.types)

 	UInt (class in revenge.types)

 	UInt16 (class in revenge.types)

 	uint16() (revenge.memory.MemoryBytes property)

 	UInt32 (class in revenge.types)

 	uint32() (revenge.memory.MemoryBytes property)

 	
 	UInt64 (class in revenge.types)

 	uint64() (revenge.memory.MemoryBytes property)

 	UInt8 (class in revenge.types)

 	uint8() (revenge.memory.MemoryBytes property)

 	ULong (class in revenge.types)

 	use_sim_procedures() (revenge.plugins.angr.Angr property)

 	UShort (class in revenge.types)

V

 	
 	values() (revenge.plugins.handles.Handles method)

 	
 	verbose() (revenge.process.Process property)

 	version (in module revenge.devices.AndroidDevice)

W

 	
 	wait_for() (revenge.techniques.native_timeless_tracer.NativeTimelessTrace method)

 	(revenge.techniques.tracer.Trace method)

 	
 	writable() (revenge.memory.MemoryRange property)

 	(revenge.plugins.handles.Handle property)

 	write() (revenge.plugins.handles.Handle method)

X

 	
 	X64Context (class in revenge.cpu.contexts.x64)

 	
 	X86Context (class in revenge.cpu.contexts.x86)

Radare2-Ghidra

The radare2 plugin exposes ghidra as a decompiler engine through the
use of a plugin called r2ghidra-dec [https://github.com/radareorg/r2ghidra-dec].

Note

Ghidra does NOT need to be installed for this. r2ghidra-dec actually
compiles the ghidra decompiler and takes care of the conversions.

Installation

You will obviously need to have radare2 installed. Beyond that, for this
decompiler to work, you wlil need to have r2ghidra-dec installed. Do the
following to install it.

This assumes you already have r2 installed

Install the build dependencies. These should work on ubuntu.
sudo apt update
sudo apt install -y wget curl bison flex pkg-config

Download and install the latest cmake. Unfortunately, the repo version is
likely too old for ubuntu and others.
https://github.com/Kitware/CMake/releases/latest

Now install the plugin
r2pm init && r2pm install r2ghidra-dec

 _static/plus.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to revenge’s documentation!

